Skip to main content
Log in

TaEPFL1, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for stamen development in wheat

  • Review
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Members of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play diverse roles in plant growth and development, including the guidance of inflorescence architecture and pedicel length. In this work, we identified and characterized the EFPL gene TaEPFL1 from the wheat pistillody mutant HTS-1. Sequence alignment and phylogenetic analysis indicated that TaEPFL1 belongs to the EPFL1 gene. Quantitative real-time RT-PCR analysis showed that the TaEPFL1 gene is expressed at an abnormally high level in pistillody stamens compared with that in pistils and stamens. Heterologous expression of the TaEPFL1 gene in Arabidopsis caused shortened filaments and pedicels and might reduce the level of AtACO2 gene expression. These results suggest that TaEPFL1 plays an important role in the development of stamen and that overexpression of TaEPFL1 results in abnormal stamens. We deduced that the overexpression of the TaEPFL1 gene may contribute to the homeotic transformation of stamens into pistils or pistil-like structures in wheat. These data offer insights into the molecular mechanism of pistillody mutation in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EPFL:

EPIDERMAL PATTERNING FACTOR-LIKE

HTS-1:

Homologous transformation sterility-1

Col-0:

Arabidopsis thaliana ecotype Columbia

ACO:

1-Aminocyclopropane-1-carboxylate oxidase

ACS:

1-Aminocyclopropane-1-carboxylate synthase

SAM:

S-Adenosyl-l-methionine synthase

References

  • Abrash EB, Bergmann DC (2010) Regional specification of stomatal production by the putative ligand CHALLAH. Development 137:447–455

    Article  CAS  PubMed  Google Scholar 

  • Abrash EB, Davies KA, Bergmann DC (2011) Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand–receptor interactions. Plant Cell 23:2864–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balague C, Walson CF, Turner AJ, Rouge P, Picton S, Pech JC, Grierson D (1993) Isolation of a ripening and wound- induced cDNA from Cucumis melo L. encoding a protein with homology to the ethylene forming enzyme. Eur J Biochem 212:27–34

    Article  CAS  PubMed  Google Scholar 

  • Barrett CH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3(4):274–284

    Article  CAS  PubMed  Google Scholar 

  • Belderok B, Mesdag H, Donner DA (2000) Bread-making quality of wheat. Kluwer Academic Publishers, Amsterdam

    Book  Google Scholar 

  • Besshouehara K, Wang DR, Furuta T, Minami A, Nagai K, Gamuyao R et al (2016) Loss of function at RAE2, a previously unidentified EPFL, is required for awnlessness in cultivated Asian rice. Proc Natl Acad Sci USA 113:8969–8974

    Article  CAS  Google Scholar 

  • Chen YH, Fu XM, Wu H, Zang J (2012) CsACO4, an ACC oxidase gene regulating male differentiation in cucumber. Afr J Biotechnol 11(67):13069–13074

    Article  CAS  Google Scholar 

  • Duan QH, Wang DH, Xu ZH and Bai SN (2008) Stamen development in Arabidopsis is arrested by organ-specific overexpression of a cucumber ethylene synthesis gene CsACO2. Planta 228(4):537–543

    Article  CAS  PubMed  Google Scholar 

  • Hama E, Takumi S, Ogihara Y, Murai K (2004) Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712–720

    Article  CAS  PubMed  Google Scholar 

  • Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol 50:1019–1031

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Tao ZS, Liu Q, Wang XF, Yu JY, Liu GH, Wang HZ (2014) BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus. Plant Mol Biol 85:505–517

    Article  CAS  PubMed  Google Scholar 

  • Hunt L, Bailey KJ, Gray JE (2010) The signalling peptide EPFL9 is a positive regulator of stomatal development. New Phytol 186:609–614

    Article  CAS  PubMed  Google Scholar 

  • Jewaria PK, Hara T, Tanaka H, Kondo T, Betsuyaku S, Sawa S, Sakagami Y, Aimoto S, Kakimoto T (2013) Differential effect of peptides stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and SPCH protein level. Plant Cell Physiol 54:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Jin J et al (2016) GAD1 encodes a secreted peptide that regulates grain number, grain length and awn development in rice domestication. Plant Cell 28(10):2453–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knopf RR, Trebitsh T (2006) The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol 47(9):1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Kajita R, Miyazaki A, Hokoyama M, Nakamura-Miura T, Mizuno S, Masuda Y, Irie K, Tanaka Y, Takada S, Kakimoto T, Sakagami Y (2010) Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant Cell Physiol 51:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kosentka PZ, Overholt A, Maradiaga R, Mitoubsi O, Shpak ED (2019) EPFL signals in the boundary region of the SAM restrict its size and promote leaf initiation. Plant Physiol 179:265–279

    Article  CAS  PubMed  Google Scholar 

  • Laubinger S, Zeller G, Henz SR, Sachsenberg T, Widmer CK, Naouar N, Vuylsteke M, Scholkopf B, Ratsch G, Weigel D (2008) At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana. Genome Biol 9(7):R112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the \({2^{ - \Delta \Delta {C_t}}}\) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Marshall E, Costa LM, Gutierrez-Marcos J (2011) Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 62:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear–cytoplasm interaction in wheat. Plant J 29:169–181

    Article  PubMed  Google Scholar 

  • Murai K, Miyamae M, Kato H, Takumi S, Ogihara Y (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiol 44:1255–1265

    Article  CAS  PubMed  Google Scholar 

  • Peng ZS, Yang ZJ, Ouyang ZM, Yang H (2013) Characterization of a novel pistillody mutant in common wheat. Aust J Crop Sci 7:159–164

    Google Scholar 

  • Rudich J (1969) Increase in femaleness of three cucurbits by treatment with Ethrel, an ethylene-releasing compound. Planta 86:69–76

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR (2009) Wheat. J Exp Bot 60(6):1537–1553

    Article  CAS  Google Scholar 

  • Steven JC, Andrew FB (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  Google Scholar 

  • Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, Mori M, Hara-Nishimura I (2010) Stomagen positively regulates stomatal density in Arabidopsis. Nature 463:241–244

    Article  CAS  PubMed  Google Scholar 

  • Takatsuji H, Nakamura N, Katsumoto Y (1994) A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell 6:947–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tsao TH (1988) Sex expression in flowering. Acta Phytophysiol Sin 14:203–207

    Google Scholar 

  • Uchida N, Tasaka M (2013) Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases. J Exp Bot 64(17):5335–5343

    Article  CAS  PubMed  Google Scholar 

  • Uchida N, Lee JS, Horst RJ, Lai HH, Kajita R, Kakimoto T, Tasaka M, Torii KU (2012) Regulation of inflorescence architecture by intertissue layer ligand–receptor communication between endodermis and phloem. Proc Natl Acad Sci USA 109(16):6337–6342

    Article  PubMed  Google Scholar 

  • Yamada K, Saraike T, Shitsukawa N, Hirabayashi C, Takumi S, Murai K (2009) Class D and B sister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Mol Biol 71:1–14

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Peng ZS, Yang H, Yang J, Wei SH, Cai P (2011) Suppression subtractive hybridization identified differentially expressed genes in pistil mutations in wheat. Plant Mol Bio Rep 29:431–439

    Article  Google Scholar 

  • Yang ZJ, Peng ZS, Wei SH, Liao ML, Yu Y, Jang ZY (2015) Pistillody mutant reveals key insights into stamen and pistil development in wheat (Triticum aestivum L.). BMC Genom 16:211–220

    Article  CAS  Google Scholar 

  • Yang Q, Yang ZJ, Tang HF, Yu Y, Chen ZY, Wei SH, Sun QX, Peng ZS (2018) High-density genetic map construction and mapping of the homologous transformation sterility gene (hts) in wheat using GBS markers. BMC Plant Biol 18:301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin T, Quinn JA (1992) A mechanistic model of a single hormone regulating both sexes in flowering plants. Bull Torrey Bot Club 119:431–441

    Article  Google Scholar 

  • Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant number 31760425), Foundation of Science and Technology department of Sichuan Province, China (Grant number 16JC022), National General Cultivation Project of China West Normal University (Grant number 17C043), and the Innovation Team Project of Education Department of Sichuan Province (Grant number 16TD0020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaijun Yang.

Ethics declarations

Conflict of interest

All authors declare that they no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Qu, J., Yu, Y. et al. TaEPFL1, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for stamen development in wheat. Genetica 147, 121–130 (2019). https://doi.org/10.1007/s10709-019-00061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-019-00061-7

Keywords

Navigation