Skip to main content
Log in

Lindbladian-Induced Alignment in Quantum Measurements

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

An expression of the Lindbladian form is proposed that ensures an unambiguous time-continuous reduction of the initial system-pointer wave-packet to one in which the readings and the observable’s values are aligned, formalized as the transition from an outer product to an inner product of the system’s and apparatus’ density matrices. The jump operators are in the basis of the observables, with uniquely determined parameters derived from the measurement set-up (thereby differing from S. Weinberg’s Lindbladian resolution of wave-packet formalism) and conforming to Born’s probability rules. The novelty lies in formalising the adaptability of the surroundings (including the measuring device) to the mode of observation. Accordingly, the transition is of finite duration (in contrast to its instantaneousness in the von Neumann’s formulation). This duration is estimated for a simple half-spin-like model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Leggett, A.J.: Macroscopic quantum systems and the quantum theory of measurement. Suppl. Progress Theor. Phys. 69, 80 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  3. Wigner, E.P.: Remarks on the mind-body question. In: Good, I.J. (ed.) The Scientist Speculates. Heinemann, London (1961)

    Google Scholar 

  4. Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)

    MATH  Google Scholar 

  5. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Pearle, P.: Combining stochastic, dynamical state reduction with spontaneous localization. Phys. Rev. A 39, 2277–2289 (1989)

    Article  ADS  Google Scholar 

  7. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  8. Byalinicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 108, 62–83 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  9. Sewell, G.: On the mathematical structure of quantum measurement theory. Rep. Math. Phys. 56, 271–290 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Diósi, L.: Models for universal reduction of macroscopic quantum fuctuations. Phys. Rev. A 40, 165 (1989)

    Article  ADS  Google Scholar 

  11. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Donadi, S., Piscicchia, K., Curceanu, C., Diósi, L., Laubenstein, M., Bassi, A.: Underground test of gravity-related wave function collapse. Nat. Phys. 17, 74 (2021)

    Article  Google Scholar 

  13. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 112–130 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N-level systems. J. Math. Phys. 17, 821–825 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Weinberg, S.: What happens in a measurement? Phys. Rev. A 93(032124), 1–6 (2016)

    Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  17. Jacobs, K., Steck, D.A.: A straightforward introduction to continuous quantum measurement. Contemp. Phys. 47(5), 279–303 (2006). arXiv:quant-ph/0611067

    Article  ADS  Google Scholar 

  18. Bohr, N.: Atomic Physics and Human Knowledge. Wiley, New York (1958)

    MATH  Google Scholar 

  19. Bell, J.: Against ‘measurement’. Phys. World 3, 33–4 (1990)

    Article  Google Scholar 

  20. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Norwell (1998)

    MATH  Google Scholar 

  21. Breuer, H.-P., Petruccione, F.F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  22. Jäger, S.B., Schmit, T., Morigi, G., Holland, M.J., Betzholz, R.: Lindblad master equations for quantum systems coupled to dissipative bosonic modes. Phys. Rev. Lett. 129(063601), 1–7 (2022)

    MathSciNet  Google Scholar 

  23. Leibfried, D., Blatt, R., Monroe, C., Wineland, D.: Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  ADS  Google Scholar 

  24. Funo, K., Shiraishi, N., Saito, K.: Speed limit for open quantum systems. New J. Phys. 21(0300611), 1–9 (2019)

    Google Scholar 

  25. Horowitz, J.M., Parrondo, J.M.R.: Entropy production along non-equilibrium jump trajectories. New J. Phys. 15(220601), 1–23 (2013)

    MATH  Google Scholar 

  26. Mandelshtam, L.I., Tamm, I.E.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. 9, 249 (1945)

    MathSciNet  Google Scholar 

  27. Margulus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Physica D 120, 188 (1998)

    Article  ADS  Google Scholar 

  28. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3444 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Deffner, S., Campbell, S.: Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A 50, 453001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697–1701 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)

    Book  MATH  Google Scholar 

  32. Manzano, D.: A short introduction to the Lindblad master equation. AIP Adv. 10(2), 1063 (2020). https://doi.org/10.1063/1.5115323

    Article  Google Scholar 

  33. Korzekwa, K., Lostaglio, M.: Optimizing thermalization. Phys. Rev. Lett. 129(040602), 1–7 (2022)

    MathSciNet  Google Scholar 

  34. Lostaglio, M., Korzekwa, K.: Continuous thermomajorizaton and a complete set of Markovian thermal processes. Phys. Rev. A 106(012426), 1–18 (2022)

    Google Scholar 

  35. Kakuyanagi, K., Baba, T., Matsuzaki, Y., Nakano, H., Saito, S., Semba, K.: Observation of quantum Zeno effect in a superconducting flux qubit. New J. Phys. 17(063035), 1–10 (2015)

    Google Scholar 

  36. Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369(5), 431–58 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for meticulous reading and insightful questioning of a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yahalom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Englman, R., Yahalom, A. Lindbladian-Induced Alignment in Quantum Measurements. Found Phys 53, 19 (2023). https://doi.org/10.1007/s10701-022-00659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00659-6

Keywords

Navigation