Skip to main content
Log in

Relativistic Hydrodynamic Interpretation of de Broglie Matter Waves

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We present a classical hydrodynamic analog of free relativistic quantum particles inspired by de Broglie’s pilot wave theory and recent developments in hydrodynamic quantum analogs. The proposed model couples a periodically forced Klein–Gordon equation with a nonrelativistic particle dynamics equation. The coupled equations may represent both quantum particles and classical particles driven by the gradients of locally excited Faraday waves. Exact stationary solutions of the coupled system reveal a highly nonlinear mechanism responsible for the self-propulsion of free particles, leading to the onset of unsteady motion. Although the model is essentially nonrelativistic, a stabilizing mechanism for any particle traveling close to the wave signaling speed emerges through the coupling with the wavefield. Consequently, inline particle oscillations comparable to de Broglie’s wavelength are realized through this fully-classical model, suggesting a new classical interpretation for the motion of relativistic quantum particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De Broglie, L.: Recherches sur la théorie des quanta. PhD thesis, Migration-université en cours d’affectation (1924)

  2. De Broglie, L.: Heisenberg’s Uncertainties and the Probabilistic Interpretation of Wave Mechanics: With Critical Notes of the Author, vol. 40. Springer, New York (2012)

    Google Scholar 

  3. De Broglie, L.: The reinterpretation of wave mechanics. Found. Phys. 1(1), 5–15 (1970)

    Article  ADS  Google Scholar 

  4. Madelung, E.: Quantentheorie in hydrodynamischen form. Zts. F. Phys. 40, 322–326 (1926)

    Article  ADS  MATH  Google Scholar 

  5. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. Phys. Rev. 85, 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079–1085 (1966). https://doi.org/10.1103/PhysRev.150.1079

    Article  ADS  Google Scholar 

  7. Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. D 11(4), 790 (1975)

    Article  ADS  Google Scholar 

  8. De la Peña, L., Cetto, A.M., Valdés-Hernández, A.: The Emerging Quantum: The Physics Behind Quantum Mechanics. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  9. Couder, Y., Fort, E., Gautier, C.H., Boudaoud, A.: From bouncing to floating: non-coalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801 (2005)

    Article  ADS  Google Scholar 

  10. Couder, Y., Fort, E.: Single particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101 (2006)

    Article  ADS  Google Scholar 

  11. Bush, J.W.M., Oza, A.U.: Hydrodynamic quantum analogs. Rep. Prog. Phys. 52(11), 071001 (2020)

    Google Scholar 

  12. Eddi, A., Fort, E., Moisy, F., Couder, Y.: Unpredictable tunneling of a classical wave-particle association. Phys. Rev. Lett. 102(24), 240401 (2009)

    Article  ADS  Google Scholar 

  13. Hubert, M., Labousse, M., Perrard, S.: Self-propulsion and crossing statistics under random initial conditions. Phys. Rev. E 95(6), 062607 (2017)

    Article  ADS  Google Scholar 

  14. Nachbin, A., Milewski, P.A., Bush, J.W.M.: Tunneling with a hydrodynamic pilot-wave model. Phys. Rev. Fluids 2(3), 034801 (2017)

    Article  ADS  Google Scholar 

  15. Tadrist, L., Gilet, T., Schlagheck, P., Bush, J.W.: Predictability in a hydrodynamic pilot-wave system: resolution of walker tunneling. Phys. Rev. E 102(1), 013104 (2020)

    Article  ADS  Google Scholar 

  16. Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J., Couder, Y.: Path-memory induced quantization of classical orbits. Proc. Natl. Acad. Sci. 107(41), 17515–17520 (2010)

    Article  ADS  Google Scholar 

  17. Harris, D.M., Bush, J.W.M.: Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444–464 (2014)

    Article  ADS  Google Scholar 

  18. Oza, A.U., Harris, D.M., Rosales, R.R., Bush, J.W.M.: Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404–429 (2014)

    Article  ADS  Google Scholar 

  19. Perrard, S., Labousse, M., Miskin, M., Fort, E., Couder, Y.: Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5(1), 1–8 (2014)

    Article  Google Scholar 

  20. Durey, M., Bush, J.W.: Hydrodynamic quantum field theory: the onset of particle motion and the form of the pilot wave. Front. Phys. 8, 300 (2020)

    Article  Google Scholar 

  21. Harris, D.M., Moukhtar, J., Fort, E., Couder, Y., Bush, J.W.: Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88(1), 011001 (2013)

    Article  ADS  Google Scholar 

  22. Gilet, T.: Dynamics and statistics of wave-particle interactions in a confined geometry. Phys. Rev. E 90(5), 052917 (2014)

    Article  ADS  Google Scholar 

  23. Gilet, T.: Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. Phys. Rev. E 93(4), 042202 (2016)

    Article  ADS  Google Scholar 

  24. Sáenz, P.J., Cristea-Platon, T., Bush, J.W.M.: Statistical projection effects in a hydrodynamic pilot-wave system. Nat. Phys. 14(3), 315 (2018)

    Article  Google Scholar 

  25. Cristea-Platon, T., Sáenz, P.J., Bush, J.W.: Walking droplets in a circular corral: quantisation and chaos. Chaos 28(9), 096116 (2018)

    Article  ADS  Google Scholar 

  26. Sáenz, P.J., Cristea-Platon, T., Bush, J.W.: A hydrodynamic analog of friedel oscillations. Sci. Adv. 6(20), 9234 (2020)

    Article  ADS  Google Scholar 

  27. Shinbrot, T.: Dynamic pilot wave bound states. Chaos 29(11), 113124 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Drezet, A., Jamet, P., Bertschy, D., Ralko, A., Poulain, C.: Mechanical analog of quantum bradyons and tachyons. Phys. Rev. E 102(052206), 1–10 (2020)

    MathSciNet  Google Scholar 

  29. Valani, R., Slim, A.C.: Pilot-wave dynamics of two identical, in-phase bouncing droplets. Chaos 28, 096114 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Valani, R.N., Slim, A.C., Paganin, D.M., Simula, T.P., Vo, T.: Unsteady dynamics of a classical particle-wave entity. Phys. Rev. E 104(1), 015106 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  31. Borghesi, C.: Equivalent quantum equations in a system inspired by bouncing droplets experiments. Found. Phys. 47, 933–958 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Jamet, P., Drezet, A..: A classical analog of the quantum Zeeman effect. Chaos Interdiscip. J. Nonlinear Sci. 32(3), 033101 (2022). https://doi.org/10.1063/5.0081254

    Article  MathSciNet  Google Scholar 

  33. Dagan, Y., Bush, J.W.: Hydrodynamic quantum field theory: the free particle. C. R. Mécanique 348(6–7), 555–571 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Dagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagan, Y. Relativistic Hydrodynamic Interpretation of de Broglie Matter Waves. Found Phys 53, 20 (2023). https://doi.org/10.1007/s10701-022-00657-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00657-8

Keywords

Navigation