Skip to main content
Log in

The Identification of Mean Quantum Potential with Fisher Information Leads to a Strong Uncertainty Relation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Cramér–Rao bound, satisfied by classical Fisher information, a key quantity in information theory, has been shown in different contexts to give rise to the Heisenberg uncertainty principle of quantum mechanics. In this paper, we show that the identification of the mean quantum potential, an important notion in Bohmian mechanics, with the Fisher information, leads, through the Cramér–Rao bound, to an uncertainty principle which is stronger, in general, than both Heisenberg and Robertson–Schrödinger uncertainty relations, allowing to experimentally test the validity of such an identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden’’ variables. I. Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden’’ variables, II. Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1995)

    MATH  Google Scholar 

  4. Holland, P.R.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  5. Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, New York (2009)

    MATH  Google Scholar 

  6. Cushing, J.T., Fine, A., Goldstein, S.: Bohmian Mechanics and Quantum Theory: An Appraisal, vol. 184. Springer, New York (2013)

    Google Scholar 

  7. Passon, O.: How to teach quantum mechanics. Eur. J. Phys. 25, 765 (2004)

    Article  Google Scholar 

  8. Monton, B.: Wave function ontology. Synthese 130, 265–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faye, J.: Copenhagen Interpretation of Quantum Mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2019)

    Google Scholar 

  10. Bohm, D.: Causality and Chance in Modern Physics, 2nd edn. Routledge, London (1984)

    Google Scholar 

  11. Berry, M.V.: Quantum backflow, negative kinetic energy, and optical retro-propagation. J. Phys. A (2010). https://doi.org/10.1088/1751-8113/43/41/415302

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldstein, S.: Bohmian Mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Stanford (2021)

    Google Scholar 

  13. Bohm, D., Hiley, B.J.: Measurement understood through the quantum potential approach. Found. Phys. 14, 255–274 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ly, A., et al.: A tutorial on fisher information. J. Math. Psychol. 80, 40 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Trans. R. Soc. A 222, 309–368 (1922)

    ADS  MATH  Google Scholar 

  16. Fisher, R.: Theory of statistical estimation. Math. Proc. Camb. Philos. Soc. 22, 700 (1925)

    Article  ADS  MATH  Google Scholar 

  17. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  18. Yuen, H., Lax, M.: Multiple-parameter quantum estimation and measurement of nonselfadjoint observables. IEEE Trans. Inf. Theor. 19, 740 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alipour, S., Rezakhani, A.T.: Extended convexity of quantum fisher information in quantum metrology. Phys. Rev. A 91, 042104 (2015)

    Article  ADS  Google Scholar 

  20. Brody, D.C., Hughston, L.P.: Geometry of quantum statistical inference. Phys. Rev. Lett. 77, 2851 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Li, N., Luo, S.: Entanglement detection via quantum fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  22. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory. Prentice-Hall Inc., Hoboken (1993)

    MATH  Google Scholar 

  23. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  24. Reginatto, M.: Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum fisher information. Phys. Rev. A 58, 1775 (1998)

    Article  ADS  Google Scholar 

  25. Hall, M.J.W.: Quantum properties of classical fisher information. Phys. Rev. A 62, 012107 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. Heifetz, E., Cohen, E.: Toward a thermo-hydrodynamic like description of Schrödinger equation via the Madelung formulation and fisher information. Found. Phys. 45, 1514–1525 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Heifetz, E., Tsekov, R., Cohen, E., et al.: On entropy production in the Madelung fluid and the role of Bohm’s potential in classical diffusion. Found. Phys. 46, 815–824 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Frieden, B.R., Binder, P.M.: Physics from fisher information: a unification. Am. J. Phys. 68, 1064 (2000)

    Article  ADS  Google Scholar 

  29. Frieden, B.R., Gatenby, R.A.: Principle of maximum fisher information from hardy’s axioms applied to statistical systems. Phys. Rev. E 88, 042144 (2013)

    Article  ADS  Google Scholar 

  30. Reginatto, M.J.W., Reginatto, M.: Schrödinger equation from an exact uncertainty principle. J. Phys. A (2002). https://doi.org/10.1088/0305-4470/35/14/310

    Article  MathSciNet  MATH  Google Scholar 

  31. Stam, A.J.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 2, 101 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  32. Luo, S.: Fisher information, kinetic energy and uncertainty relation inequalities. J. Phys. A 35, 1–10 (2002). https://doi.org/10.1088/0305-4470/35/25/303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zwierz, M., Pérez-Delgado, C.A., Kok, P.: Ultimate limits to quantum metrology and the meaning of the Heisenberg limit. Phys. Rev. A 85, 042112 (2012)

    Article  ADS  Google Scholar 

  34. Gibilisco, P., Isola, T.: Uncertainty principle and quantum fisher information. Ann. Inst. Stat. Math. 59, 147–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fröwis, F., Schmied, R., Gisin, N.: Tighter quantum uncertainty relations following from a general probabilistic bound. Phys. Rev. A 92, 012102 (2015)

    Article  ADS  Google Scholar 

  36. Carmi, A., Cohen, E.: Relativistic independence bounds nonlocality. Sci. Adv. 5, eaav8370 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Grant No. FQXi-RFP-CPW-2006 from the Foundational Questions Institute and Fetzer Franklin Fund, a donor-advised fund of Silicon Valley Community Foundation. E.C. was supported by the Israeli Innovation Authority under Projects No. 70002 and No. 73795, by the Pazy Foundation, by ELTA Systems LTD—Israel Aerospace Industries (IAI) division, by the Israeli Ministry of Science and Technology, and by the Quantum Science and Technology Program of the Israeli Council of Higher Education.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed significantly to all aspects of the work.

Corresponding author

Correspondence to Eliahu Cohen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloch, Y., Cohen, E. The Identification of Mean Quantum Potential with Fisher Information Leads to a Strong Uncertainty Relation. Found Phys 52, 117 (2022). https://doi.org/10.1007/s10701-022-00638-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00638-x

Keywords

Navigation