Skip to main content
Log in

On the Equivalence Between Rotation and Gravity: “Gravitational” and “Cosmological” Redshifts in the Laboratory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Mössbauer rotor effect recently gained a renewed interest due to the discovery and explanation of an additional effect of clock synchronization which has been missed for about 50 years, i.e. starting from a famous book of Pauli, till some recent experimental analyses. The theoretical explanation of such an additional effect is due to some recent papers in both the general relativistic and the special relativistic frameworks. In the first case (general relativistic framework) the key point of the approach is the Einstein’s equivalence principle (EEP), which, in the words of the same Einstein, enables “the point of view to interpret the rotating system K’ as at rest, and the centrifugal field as a gravitational field”. In this paper, we analyse both the history of the Mössbauer rotor effect and its interpretation from the point of view of Einstein’s general theory of relativity (GTR) by adding some new insight. In particular, it will be shown that, if on one hand the “traditional” effect of redshift has a strong analogy with the gravitational redshift, on the other hand the additional effect of clock synchronization has an intriguing analogy with the cosmological redshift. Finally, we show that a recent claim in the literature that the second effect of clock synchronization does not exist is not correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sagnac, G.: L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme. C. R. 157, 708 (1913)

    Google Scholar 

  2. Sagnac, G.: Sur la preuve de la realite de l’ether lumineux par l’experience de l’interferographe tournant.Par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme. C. R. 157, 1410 (1913)

    Google Scholar 

  3. von Laue, M.: Zur Diskussion iiber den starren Korper in der Relativitatstheorie. Phys. Z. 12, 85 (1911)

    MATH  Google Scholar 

  4. Einstein, A.: Bemerkung zu P. Harzers Abhandlung: Die Mitfuhrung des Lichtes in Glas und die Aberration. Astron. Nachr. 199, 8 (1914)

    ADS  Google Scholar 

  5. Einstein, A.: Antwort auf eine Replik P. Harzers. Astron. Nachr. 199, 47 (1914)

    Article  ADS  Google Scholar 

  6. von Laue, M.: Theoretisches liber optische Beobachtungen zur Relativitatstheorie. Phys. Z. 21, 659 (1920)

    MATH  Google Scholar 

  7. Langevin, P.: Sur la theorie de relativite et l’experience de M. Sagnac. C. R. 173, 831 (1921)

    MATH  Google Scholar 

  8. Langevin, P.: Relativite—Sur l’experience de Sagnac. C. R. 2015, 304 (1937)

    Google Scholar 

  9. Rizzi, G., Ruggiero, M.L.: The relativistic Sagnac Effect: two derivations. In: Rizzi, G., Ruggiero, M.L. (eds.) Relativity in Rotating Frames. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  10. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 2nd edn. Pergamon Press, Oxford (1962)

    MATH  Google Scholar 

  11. Einstein, A.: The collected papers, Volume 6: the Berlin years: writings, 1914–1917 (English translation supplement) pp. 31–32

  12. Pauli, W.: Theory of Relativity. Pergamon Press, London (1958)

    MATH  Google Scholar 

  13. Corda, C.: New proof of general relativity through the correct physical interpretation of the Mossbauer rotor experiment. Int. J. Mod. Phys. D 27, 1847016 (2018)

    Article  ADS  Google Scholar 

  14. Corda, C.: Interpretation of Mossbauer experiment in a rotating system: a new proof for general relativity. Ann. Phys. 355, 360 (2015)

    Article  ADS  Google Scholar 

  15. Iovane, G., Benedetto, E.: Coordinate velocity and desynchronization of clocks. Ann. Phys. 403, 106 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kündig, W.: Measurement of the transverse Doppler effect in an accelerated system. Phys. Rev. 129, 2371 (1963)

    Article  ADS  Google Scholar 

  17. Corda, C.: Mossbauer rotor experiment as new proof of general relativity: rigorous computation of the additional effect of clock synchronization. Int. J. Mod. Phys. D 28, 1950131 (2019)

    Article  ADS  MATH  Google Scholar 

  18. Benedetto, E., Feleppa, F., Licata, I., Moradpour, H., Corda, C.: On the general relativistic framework of the Sagnac effect. Eur. Phys. J. C 79, 187 (2019)

    Article  ADS  Google Scholar 

  19. Lichtenegger, H., Mashhoon, B.: In: Iorio, L. (ed.) Second chapter of The Measurement of Gravitomagnetism: A Challenging Enterprise. Nova Science, New York (2007)

  20. Brill, D.R., Cohen, J.M.: Rotating masses and their effect on inertial frames. Phys. Rev. 143, 1011 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  21. Schucking, E.L., Surowitz, E.J.: Einstein’s apple: His first principle of equivalence. http://arxiv.org/gr-qc/0703149

  22. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  24. Pfister, H.: On the history of the so-called Lense-Thirring effect. Gen. Relat. Gravit. 39, 1735 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Phenomenology of the Lense-Thirring effect in the solar system. Astrophys. Space Sci. 331, 351 (2013)

    Article  ADS  MATH  Google Scholar 

  26. Iorio, L.: The post-Newtonian gravitomagnetic spin-octupole moment of an oblate rotating body and its effects on an orbiting test particle; are they measurable in the Solar System? Mon. Not. R. Astron. Soc. 484, 4811 (2019)

    Article  ADS  Google Scholar 

  27. Iorio, L.: Measuring general relativistic dragging effects in the Earth’s gravitational field with ELXIS: a proposal. Class. Quant. Gravit. 36, 035002 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Iorio, L., Corda, C.: Gravitomagnetism and Gravitational Waves. Open Astron. J. Suppl. 1–M5, 84 (2011)

    Article  Google Scholar 

  29. Ruggiero, M.L., Tartaglia, A.: Test of gravitomagnetism with satellites around the Earth. Eur. Phys. J. Plus 134, 205 (2019)

    Article  Google Scholar 

  30. Ruggiero, M.L.: Gravitomagnetic field of rotating rings. Astrophys. Space Sci. 361, 140 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Ruggiero, M.L.: Gravito-electromagnetic effects of massive rings. Int. J. Mod. Phys. D 24, 1550060 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ashby, N.: Relativity in the global positioning system. Living Rev. Relat. 6, 1 (2003)

    Article  MATH  Google Scholar 

  33. Oort, J.H.: The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems. Bull. Astron. Neth. 6, 249 (1932)

    ADS  MATH  Google Scholar 

  34. Zwicky, F.: Die Rotverschieb ung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110 (1933)

    ADS  MATH  Google Scholar 

  35. Kholmetskii, A.L., Yarman, T., Yarman, O., Arik, M.: Concerning Mossbauer experiments in a rotating system and their physical interpretation. Ann. Phys. 411, 167912 (2019)

    Article  MATH  Google Scholar 

  36. Mössbauer, R.L.: Kernresonanzfluoreszenz von Gammastrahlung in Ir\(^{191}\). Z. Phys. A (in German) 151, 124 (1958)

    Google Scholar 

  37. Hofstadter, R.: The Electron-Scattering Method and Its Application to the Structure of Nuclei and Nucleons. Nobel Lecture. Accessed 11 Dec 1961

  38. Kholmetskii, A.L., Yarman, T., Missevitch, O.V.: Kündig’s experiment on the transverse Doppler shift re-analyzed. Phys. Scr. 77, 035302 (2008)

    Article  ADS  Google Scholar 

  39. Kholmetskii, A.L., Yarman, T., Missevitch, O.V., Rogozev, B.I.: A Mössbauer experiment in a rotating system on the second-order Doppler shift: confirmation of the corrected result by Kündig. Phys. Scr. 79, 065007 (2009)

    Article  ADS  Google Scholar 

  40. Hay, H.J., et al.: Measurement of the red shift in an accelerated system using the Mössbauer effect in \(Fe^{57}\) Phys. Rev. Lett. 4, 165 (1960)

    Article  ADS  Google Scholar 

  41. Hay, H. J.: In: Schoen, A., Compton D.M.T. (eds.) Proceedings of the 2nd Conference on the Mössbauer Effect, p. 225. Wiley, New York (1962)

  42. Granshaw, T.E., Hay, H.J.: In: Proceedings of the International School of Physics, Enrico Fermi, p. 220. Academic, New York (1963)

  43. Champeney, D.C., Moon, P.B.: Absence of Doppler shift for gamma ray source and detector on same circular orbit. Proc. Phys. Soc. 77, 350 (1961)

    Article  ADS  Google Scholar 

  44. Champeney, D.C., Isaak, G.R., Khan, A.M.: A time dilatation experiment based on the Mössbauer effect. Proc. Phys. Soc. 85, 583 (1965)

    Article  ADS  Google Scholar 

  45. Rizzi, G., Ruggiero, M.L.: Space geometry of rotating platforms: an operational approach. Found. Phys. 32, 1525 (2002)

    Article  MathSciNet  Google Scholar 

  46. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Feeman and Company, London (1973)

    Google Scholar 

  47. Einstein, A.: Die Grundlage der allgemeinen Relativitatstheorie. Ann. Phys. 354, 769 (1916)

    Article  MATH  Google Scholar 

  48. Weyl, H.: Raum, Zeit, Materie: Ressource Vorlesungen uber Allgemeine Relativitatstheorie. Springer, Berlin (1923)

  49. Yarman, T., Kholmetskii, A.L., Arik, M.: Mössbauer experiments in a rotating system: Recent errors and novel interpretation. Eur. Phys. Jour. Plus 130, 191 (2015)

    Article  ADS  Google Scholar 

  50. Kholmetskii, A.L., Yarman, T., Yarman, O., Arik, M.: Response to The Mössbauer rotor experiment and the general theory of relativity by C. Corda. Ann. Phys. 374, 247 (2016)

  51. Foukzon, J., Men’kova, E.R.: Comment on The Mössbauer rotor experiment and the general theory of relativity [Ann. Physics 368, 258–266 (2016)] Ann. Phys. 413, 168047 (2020)

Download references

Acknowledgements

The Author thanks an unknown Referee for very useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Corda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corda, C. On the Equivalence Between Rotation and Gravity: “Gravitational” and “Cosmological” Redshifts in the Laboratory. Found Phys 52, 42 (2022). https://doi.org/10.1007/s10701-022-00558-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00558-w

Keywords

Navigation