Skip to main content
Log in

The Common Logic of Quantum Universe—Part I: The Case of Non-relativistic Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

One of the most challenging and fascinating issue in mathematical and theoretical physics concerns the possibility of identifying the logic underlying the so-called quantum universe, i.e., Quantum Mechanics and Quantum Gravity. Besides the sheer difficulty of the problem, inherent in the actual formulation of Quantum Mechanics—and especially of Quantum Gravity—to be used for such a task, a crucial aspect lies in the identification of the appropriate axiomatic logical proposition calculus to be associated to such theories. In this paper the issue of the validity of the conventional principle of non-contradiction (PNC) is called into question and is investigated in the context of non-relativistic Quantum Mechanics. In the same framework a modified form of the principle, denoted as 3-way PNC is shown to apply, which relates the axioms of quantum logic with the physical requirements placed by the Heisenberg Indeterminacy Principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical research. All data produced during this study are contained in this published paper.]

References

  1. Jammer, M.: The Philosophy of Quantum Mechanics. Wiley, New York (1974)

    Google Scholar 

  2. Corsi, G., Dalla Chiara, M.L., Ghirardi, G.C.: Bridging the gap: philosophy, mathematics and physics lectures on the foundations of science. Stud. Logica. 53, 462–464 (1994)

    Google Scholar 

  3. Heifetz, E., Cohen, E.: Toward a thermo-hydrodynamic like description of Schrödinger equation via the Madelung formulation and Fisher information. Found. Phys. 45, 1514 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. Heifetz, E., Tsekov, R., Cohen, E., Nussinov, Z.: On entropy production in the Madelung fluid and the role of Bohm’s potential in classical diffusion. Found. Phys. 46, 815 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Tessarotto, M., Cremaschini, C.: Generalized Lagrangian-path representation of non-relativistic quantum mechanics. Found. Phys. 46, 1022 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Tessarotto, M., Cremaschini, C.: Generalized Lagrangian path approach to manifestly-covariant quantum gravity theory. Entropy 20, 205 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cremaschini, C., Tessarotto, M.: Hamiltonian approach to GR—part 1: covariant theory of classical gravity. Eur. Phys. J. C 77, 329 (2017)

    Article  ADS  Google Scholar 

  8. Cremaschini, C., Tessarotto, M.: Hamiltonian approach to GR—part 2: covariant theory of quantum gravity. Eur. Phys. J. C 77, 330 (2017)

    Article  ADS  Google Scholar 

  9. Cremaschini, C., Tessarotto, M.: Quantum-wave equation and Heisenberg inequalities of covariant quantum gravity. Entropy 19, 339 (2017)

    Article  ADS  Google Scholar 

  10. Tessarotto, M., Cremaschini, C.: The Heisenberg indeterminacy principle in the context of covariant quantum gravity. Entropy 22, 1209 (2020)

    Article  MathSciNet  Google Scholar 

  11. Tessarotto, M., Cremaschini, C.: The principle of covariance and the Hamiltonian formulation of general relativity. Entropy 23, 215 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  12. Kant, I.: Kritik der reinen Vernunft, 1781; Critique of Pure Reason, first English translation by Francis Haywood. William Pickering (1838)

  13. Newton, I.: Philosophiæ Naturalis Principia Mathematica (1687); I. Mathematical Principles of Natural Philosophy. University of California Press, Newton (1999)

    Google Scholar 

  14. Mathieu, V.: In the Introduction to Critica della Ragion Pura, p. viii, Universale Laterza (1974)

  15. Kant, I.: Critique of Pure Reason, Online Library of Liberty, Book 2, Chap. II, Sec. IV; https://oll.libertyfund.org/title/ller-critique-of-pure-reason

  16. Barrow, J.: Goedel and physics. In: M. Baez, C. Papadimitriou, H. Putnam, D. Scott, C. Harper (eds.) Kurt Geodel and the Foundations of Mathematics: Horizons of Truth, chap 11, pp. 255–276, Cambridge UP (2011)

  17. Kant, I.: Bei weitem größte Theil der Menschen (darunter das ganze schöne Geschlecht) and Berlinische Monatsschrift, Band 4, (1784) https://korpora.zim.uni-duisburg-essen.de/Kant/aa08/035.html

  18. Goedel, K.: Über formal unentscheidbare Sä tze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

    Article  MathSciNet  Google Scholar 

  19. Birkhoff, G., von Neumann, J.: Ann. Phys. 2nd Ser. 37(4), 823–843 (1936)

    Google Scholar 

  20. Uffink, J.: The joint measurement problem. Int. J. Theor. Phys. 33, 199–212 (1994)

    Article  MathSciNet  Google Scholar 

  21. Putnam, H.: Is logic empirical? Boston studies in the philosophy of science, vol. 5, eds. Robert S. Cohen and Marx W. Wartofsky (Dordrecht: D. Reidel, 1968), pp. 216–241. Repr. as “The Logic of Quantum Mechanics” in Mathematics, Matter and Method (1975), pp. 174–197

  22. von Neumann, J., Wheeler, N. A.: (eds.). Mathematical Foundations of Quantum Mechanics. New Edition. Translated by Robert T. Beyer. Princeton University Press. ISBN 9781400889921 (2018)

  23. MacKay, G.: Mathematical Foundations of Quantum Mechanics, Dover Books on Mathematics ISBN 0-486-43517-2 (1963)

  24. Beltrametti, E.G., Cassinelli, G.: The Logic of Quantum Mechanics. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  25. Kalmbach, G.: Orthomodular Lattices. Academic Press, New York (1983)

    MATH  Google Scholar 

  26. Cohen, D.W.: An Introduction to Hilbert Space and Quantum Logic. Springer, New York (1989)

    Book  Google Scholar 

  27. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum logic. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  28. Giuntini, R.: Quantum Logic and Hidden Variables. BI Wissenschaftsverlag, Mannheim (1991)

    MATH  Google Scholar 

  29. Svozil, K.: Quantum Logic. Springer, Singapore (1998)

    MATH  Google Scholar 

  30. Svozil, K.: Quantum logic in algebraic approach. Stud. Hist. Philos. Mod. Phys. 32(1), 113–115 (2001)

    Article  Google Scholar 

  31. Zizzi, P.: The uncertainty relation for quantum propositions. Int. J. Theor. Phys. 252, 186–198 (2013)

    Article  Google Scholar 

  32. Maudlin, T.: The tale of quantum logic. In: Putna, H. (ed.) Cambridge: Cambridge University Press. pp. 184–185 (2005)

  33. Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory: Sharp and Unsharp Quantum Logics. Kluwer, Dordrecht (2004)

    Book  Google Scholar 

  34. Dalla Chiara, M.L., Giuntini, R.: Unsharp quantum logics. Found. Phys. 24, 1161–1177 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  35. Georgescu, G., Vraciu, C.: On the characterization of centered Łukasiewicz algebras. J. Algebra 16, 486–495 (1970)

    Article  MathSciNet  Google Scholar 

  36. Georgescu, G.: \(N-\)valued logic and Łukasiewicz-Moisil Algebras. Axiomathes 16, 123 (2006)

    Article  Google Scholar 

  37. Bouda, A.: From a mechanical Lagrangian to the Schrödinger equation. Int. J. Mod. Phys. A 18, 3347 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. Holland, P.: Computing the wavefunction from trajectories: particle and wave pictures in quantum mechanics and their relation. Ann. Phys. 315, 505 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  39. Poirier, B.: Bohmian mechanics without pilot waves. Chem. Phys. 370, 4 (2010)

    Article  Google Scholar 

  40. Holland, P.P.: In P. Chattaraj (ed.) Quantum Trajectories. CRC Press, Boca Raton (2010)

  41. Parlant, G., Ou, Y.-C., Park, K.K., Poirier, B.: Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities. Comput. Theor. Chem. 990, 3 (2012)

    Article  Google Scholar 

  42. Bolotin, A.: Wave-particle duality and the objectiveness of “True’’ and “False’’. Found. Phys. 51, 78 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  43. Jaynes, E.T.: Information theory and statistical mechanics I. Phys. Rev. 106, 620 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  44. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108, 171 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  45. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  46. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen kinematik und mechanik. Z. Phys. 43 , 172–198 (1927), English translation: The physical contents of quantum kinematics and mechanics. In Quantum Theory and Measurement; Wheeler, J.A., Zurek, W.H., Eds.; Princeton University Press: Princeton, 1983

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cremaschini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: The Logic of Classical Mechanics (Newtonian Cosmology)

Let us recall here briefly some elementary notions of Classical Mechanics (CM), also known as the so-called Newtonian cosmology. We consider for definiteness, as a possible realization of CM, a classical N-body system \(S_{N}\). We shall assume for this purpose that \(S_{N}\) is formed by N point particles of mass m which are described by the canonical state \({\mathbf{x}}\equiv \left( \mathbf{r},\mathbf{p}\right) \in \Gamma ^{N}\), with \(\mathbf{ x}\equiv ({\mathbf{x}}_{1},\ldots,\mathbf{x_{N}}),\) \({\mathbf{r}}\equiv ({\mathbf{r}} _{1},\ldots,{\mathbf{r}}_{N})\) and \({\mathbf{p}}\equiv ({\mathbf{p}}_{1},\ldots,\mathbf{p }_{N})\) being respectively the N-body state, configuration and canonical momentum vectors. Here \(\Gamma ^{N}\) is the N-body phase space \(\Gamma ^{N}=\Omega ^{N}\times V^{N}\), with \(\Omega ^{N}=\prod \limits _{i=1,N}\Omega\) and \(V^{N}=\prod \limits _{i=1,N}V\) being respectively the N-body configuration and momentum spaces, and where \(\Omega\) and V are the corresponding 1-body configuration and momentum spaces. Thus, in particular, the 1-body configuration space \(\Omega \equiv E^{3}\) is identified with the whole Euclidean space on \({\mathbb{R}} ^{3}\), while the classical universe (or space-time) coincides with the so-called Galilean product space-time \(\Omega \times I\), with \(I\equiv E\) denoting the 1-dimensional (Euclidean) time axis spanned by the absolute time t. In CM, by assumption, the dynamics of \(S_{N}\) is governed by the classical Hamilton–Jacobi equation

$$\begin{aligned} \frac{\partial S({\mathbf{r}},t)}{\partial t}+H(\mathbf{r},\nabla S({\mathbf{r}} ,t),t)=0, \end{aligned}$$
(108)

where \(H({\mathbf{r}},\nabla S({\mathbf{r}},t),t)=\frac{1}{2m}\left( \nabla S\right) ^{2}+U({\mathbf{r}},t)\) and \(U({\mathbf{r}},t)\) are respectively the classical Hamiltonian and potential acting on the classical N-body system \(S_{N}\). As a consequence, by setting \({\mathbf{p}}=\nabla S({\mathbf{r}},t)\) it follows that the canonical state \(x(t)=\left( {\mathbf{r}}(t),\mathbf{p} (t)\equiv \nabla S({\mathbf{r}}(t),t)\right)\) is uniquely determined by the corresponding Hamilton equations, namely

$$\begin{aligned} \left\{ \begin{array}{l} \frac{d{\mathbf{r}}}{dt}=\frac{1}{m}{\mathbf{p}}, \\ \frac{d{\mathbf{p}}}{dt}=-\nabla U(\mathbf{r},t), \end{array} \right. \end{aligned}$$
(109)

together with the initial value problem

$$\begin{aligned} {\mathbf{x}}(t_{0})={\mathbf{x}}_{0}=\left\{ {\mathbf{r}}_{0},\mathbf{p} _{0}\right\} , \end{aligned}$$
(110)

with \({\mathbf{x}}_{0}\in \Gamma ^{N}\) being suitably-prescribed. Then, by assumption the solution of the initial-value problem (109)–(110) exists (Newton’s law) and is unique (Newton’s deterministic principle). Denoting it by \({\mathbf{x}}(t)= {\chi }({\mathbf{x}}_{0},t_{0},t)\) and \({\mathbf{x}}(t_{0})= {\chi }({\mathbf{x}}(t),t,t_{0})\) its inverse map, it then follows that the phase-space mapping (i.e., a one-parameter bijection in the phase space \(\Gamma ^{N}\))

$$\begin{aligned} {\mathbf{x}}(t_{0})\rightarrow {\mathbf{x}}(t)={\chi }({\mathbf{x}} _{0},t_{0},t) \end{aligned}$$
(111)

determines a classical dynamical system, to be identified as the \(N-\)body classical dynamical system \(S_{N}.\)

Then, a classical observable is realized by an arbitrary real vector phase-function \(f({\mathbf{x}},t)\in {\mathbb{R}} ^{k}\) with \(k\ge 1\), while the classical expectation value of a classical observable \(f({\mathbf{x}},t)\in {\mathbb{R}} ^{k}\) (with \(k\ge 1\)) is defined by the image of the map corresponding to a prescribed arbitrary extended state \(\left( {\mathbf{x}},t\right)\), i.e.,

$$\begin{aligned} \left( {\mathbf{x}},t\right) \in \Gamma ^{N}\times I\rightarrow f({\mathbf{x}} ,t). \end{aligned}$$
(112)

The logic of Classical Mechanics is the logic of classical expectation values of classical observables. For definiteness, let us consider the case of scalar classical observables \(\alpha\), in which \(f({\mathbf{x}},t)\in {\mathbb{R}}\). If \(a\in {\mathbb{R}}\) we say that the logical sentence "the observable \(f({\mathbf{x}},t)\) assumes the scalar value a for the state \({\mathbf{x}}\in \Gamma ^{N}\)" is true if the image of the map (112), namely \(f({\mathbf{x}} ,t)\), coincides with a, namely if \(a=f({\mathbf{x}},t)\), being \(a\in {\mathbb{R}}\) a real constant. Therefore, this means that the set \(S=\{{\mathbf{x}}\in \Gamma ^{N}|a=f({\mathbf{x}},t)\}\) is non-empty. This is the set of all true propositions, while the complementary set, namely \({\mathcal{C}}S\equiv \Gamma ^{N}-S\) is the set of false propositions. As a consequence:

  1. 1.

    The set S identifies the classical truth in CM, while its complementary set, i.e., \(CS\equiv \Gamma ^{N}-S\) corresponds to classical falsehood (the set of false propositions).

  2. 2.

    The expectation value \({\mathbf{a}}=f({\mathbf{x}},t)\) induces a partition of the phase-space \(\Gamma ^{N}\) into two subsets \(F=\{S,\Gamma ^{N}-S\}\).

  3. 3.

    Axiom of independence for measurement of independent observables: given an arbitrary set of independent observables \(f_{i}( {\mathbf{x}},t)\) (\(i=1,2f\), with f denoting the degree of freedom of the system), their expectation values \(a_{i}=f_{i}({\mathbf{x}},t)\) are independent too.

In conclusion we can state that the logic of Classical Mechanics obeys the axioms of Classical Logic, namely:

a. All logical sentences are either true or false (2-way Principle of non contradiction).

b. All logical propositions are decidable (Deterministic principle).

c. All logical propositions are associative with respect to the logical connectives \(\wedge\) (“and”), \(\vee\) “or”, and \(\lnot\)“not” so that

$$\begin{aligned} A\wedge \left( B\vee C\right)= & {} \left( A\wedge B\right) \vee \left( A\wedge C\right) , \end{aligned}$$
(113)
$$\begin{aligned} A\wedge \left( \lnot B\vee \lnot C\right)= & {} \left( A\wedge \lnot B\right) \vee \left( A\wedge \lnot C\right) . \nonumber \end{aligned}$$
(114)

The last property follows because propositions of this type can be combined by the logical connectives “and”, “or”, and “not”. The structure of propositional logic for CM is obviously that of classical logic, i.e., a Boolean algebra of subsets of the state space.

Appendix 2

Let us proceed here with the explicit evaluation of the standard deviations introduced in Sect. 3, \(\sigma _{\Delta r_{i}}^{2}\) and \(\sigma _{\pi _{\Delta r_{j}}}^{2}\), prescribed in terms of Eqs. (48) and (49) via the definition of the local scalar product (18). The quantum wave function is taken of the Madelung form (8), while the quantum PDF and phase-function \(\rho ({\mathbf{r}} ,t)\) and \(S^{(q)}({\mathbf{r}},t)\) take respectively the N-body Gaussian-like GLP-quantum PDF (27) and the second-degree polynomial (29). To evaluate explicitly the standard deviation (48) we notice that the following identities hold

$$\begin{aligned} \overline{\Delta r_{j}}= & {} \left\langle \psi \left| \Delta r_{j}\psi \right. \right\rangle _{L}=\int d^{3N}{\mathbf{r}}\rho (\mathbf{r},t)\Delta r_{j}=\int d^{3N}\Delta {\mathbf{r}}\rho _{G}(\Delta {\mathbf{r}})\Delta r_{j}=0, \end{aligned}$$
(115)
$$\begin{aligned} \sigma _{\Delta r_{j}}^{2}= & {} \left\langle \psi \left| \left( \Delta r_{j}- \overline{\Delta r_{j}}\right) ^{2}\psi \right. \right\rangle _{L}=\int d^{3N}{\mathbf{r}}\rho (\mathbf{r},t)\Delta r_{j}^{2}=\int d^{3N}\Delta {\mathbf{r}}\rho _{G}(\Delta {\mathbf{r}})\Delta r_{j}^{2}=\frac{r_{th}^{2}}{2}. \end{aligned}$$
(116)

Furthermore, one obtains

$$\begin{aligned} {\overline{\pi }}_{\Delta r_{j}}=\left\langle \psi \left| \pi _{\Delta r_{j}}\psi \right. \right\rangle _{L}=\int d^{3N}\Delta {\mathbf{r}}\rho _{G}(\Delta {\mathbf{r}})\left[ a(\mathbf{r},t)\Delta r_{j}\mathbf{+}b_{j}( \mathbf{r},t)\right] =b_{j}(\mathbf{r},t), \end{aligned}$$
(117)

and furthermore

$$\begin{aligned} \sigma _{\pi _{\Delta r_{j}}}^{2}=\left\langle \psi \left| \left( \pi _{\Delta r_{j}}-{\overline{\pi }}_{\Delta r_{j}}\right) ^{2}\psi \right. \right\rangle _{L}=\left\langle \left( \pi _{\Delta r_{j}}^{*}-\overline{ \pi }_{\Delta r_{j}}\right) \psi \left| \left( \pi _{\Delta r_{j}}- {\overline{\pi }}_{\Delta r_{j}}\right) \psi \right. \right\rangle _{L}, \end{aligned}$$
(118)

where

$$\begin{aligned} \left\langle \left( \pi _{\Delta r_{j}}^{*}-{\overline{\pi }}_{\Delta r_{j}}\right) \psi \left| \left( \pi _{\Delta r_{j}}-{\overline{\pi }} _{\Delta r_{j}}\right) \psi \right. \right\rangle _{L}=\frac{4\hbar ^{2}}{ r_{th}^{4}}\int d^{3N}\Delta {\mathbf{r}}\rho _{G}(\Delta {\mathbf{r}})\Delta r_{j}^{2}, \end{aligned}$$
(119)

so that

$$\begin{aligned} \sigma _{\pi _{\Delta r_{j}}}=\frac{2\hbar ^{2}}{r_{th}^{2}}. \end{aligned}$$
(120)

Appendix 3

Let us introduce for the quantum wave-function \(\psi ({\mathbf{r}},t)\) the asymptotic representation

$$\begin{aligned} \psi ({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)\equiv e^{\frac{i}{ \hbar }r_{(i)}\pi _{r_{i}}^{(o)}}{\widehat{\psi }}({\mathbf{r}}^{\prime },\varepsilon r_{i},t), \end{aligned}$$
(121)

with \({\widehat{\psi }}({\mathbf{r}}^{\prime },\varepsilon r_{i},t)\) being a suitably smooth complex function, \({\mathbf{r}}^{\prime }\equiv \left( r_{1},r_{i-1},r_{i+1},\ldots,r_{3N}\right)\), \(\varepsilon\) being an infinitesimal real parameter and \(\pi _{{\mathbf{r}}_{i}}^{(o)}\) a constant asymptotic real eigenvalue of the quantum momentum \(\pi _{r_{i}}\) assumed independent of \(({\mathbf{r}},t)\) and \(\varepsilon\). Then, denoting \(r_{i1}=\varepsilon r_{i}\), by construction the wave function \(\psi (\mathbf{r }^{\prime },r_{i},r_{i1},t)\) satisfies the asymptotic eigenvalue equation:

$$\begin{aligned} \pi _{{\mathbf{r}}_{i}}\psi ({\mathbf{r}}^{\prime },r_{i},r_{i1},t)=\pi _{ {\mathbf{r}}_{i}}^{(o)}e^{\frac{i}{\hbar }r_{(i)}\pi _{{\mathbf{r}}_{i}}^{(o)}} {\widehat{\psi }}({\mathbf{r}}^{\prime },r_{i1},t)-\varepsilon i\hbar e^{\frac{i }{\hbar }r_{(i)}\pi _{{\mathbf{r}}_{i}}^{(o)}}\frac{\partial }{\partial r_{i1}} {\widehat{\psi }}({\mathbf{r}}^{\prime },r_{i1},t). \end{aligned}$$
(122)

The Born rule \(\rho ({\mathbf{r}},t)\equiv\) \(\left| \psi ({\mathbf{r}} ,t)\right| ^{2}\) then delivers

$$\begin{aligned} \rho ({\mathbf{r}},t)\equiv \rho ({\mathbf{r}}^{\prime },r_{i1},t)=\left| {\widehat{\psi }}({\mathbf{r}}^{\prime },r_{i1},t)\right| ^{2}, \end{aligned}$$
(123)

where for \(\rho ({\mathbf{r}}^{\prime },r_{i1},t)\) we assume a Gaussian-like solution of the type (27). Then, denoting \(\Delta {\mathbf{r}} \equiv \left\{ \Delta r_{1},\ldots,\Delta r_{3N}\right\}\) and \(\Delta \mathbf{r }^{\prime }\equiv \left\{ \Delta r_{1},\Delta r_{i-1},\Delta r_{i+1}...,\Delta r_{3N}\right\}\) this yields

$$\begin{aligned} \rho ({\mathbf{r}}^{\prime },r_{i1},t)\equiv \rho _{G}^{\prime }(\Delta {\mathbf{r}}{^{\prime }})\rho _{Gi}(\varepsilon \Delta r_{i})\exp \left\{ -\int \limits _{t_{o}}^{t}dt^{\prime }\nabla _{{\mathbf{R}}}\cdot \nabla _{ {\mathbf{R}}}S(\Delta {\mathbf{r}}^{\prime },\varepsilon \Delta r_{i},t^{\prime })\right\} , \end{aligned}$$
(124)

where \(\rho _{G}^{\prime }(\Delta {\mathbf{r}}{^{\prime }})\) and \(\rho _{Gi}(\varepsilon \Delta r_{i})\) denote respectively the \(\left( 3N-1\right)\)- and 1-dimensional Gaussian distributions

$$\begin{aligned} \rho _{G}^{\prime }(\Delta {\mathbf{r}}{^{\prime }})= & {} \frac{1}{\pi ^{3(N-1)/2}r_{th}^{3(N-1)}}\exp \left\{ -\frac{\left( \Delta {\mathbf{r}} ^{\prime }\right) ^{2}}{r_{th}^{2}}\right\} , \\ \rho _{Gi}(\varepsilon \Delta {\mathbf{r}}_{i})= & {} \frac{1}{\pi ^{3/2}r_{th}^{3}}\exp \left\{ -\frac{\left( \varepsilon \Delta {\mathbf{r}} _{i}\right) ^{2}}{r_{th}^{2}}\right\} . \end{aligned}$$
(125)

Therefore, by construction the normalization

$$\begin{aligned} \int \limits _{-\infty }^{\infty }d\Delta r_{i}\frac{1}{\pi ^{1/2}r_{th}}\exp \left\{ -\frac{\left( \varepsilon \Delta {\mathbf{r}}_{i}\right) ^{2}}{ r_{th}^{2}}\right\} =\frac{1}{\varepsilon } \end{aligned}$$
(126)

holds, which implies that \(\lim _{\varepsilon \rightarrow 0}\rho ({\mathbf{r}} ^{\prime },\varepsilon {\mathbf{r}}_{i},t)\) is not dynamically consistent in the limit \(\varepsilon \rightarrow 0\). In terms of \(\psi ({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)\) and \(\rho ({\mathbf{r}}^{\prime },\varepsilon r_{i},t)\), however, the standard deviation \(\sigma _{\pi _{r_{i}}}^{2}\equiv \left\langle \left\langle \psi ({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)\left| \left( D\pi _{r_{i}}\right) ^{2}\psi ({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)\right. \right\rangle \right\rangle\) can be formally evaluated. In particular one finds that

$$\begin{aligned} \sigma _{\pi _{r_{i}}}^{2}\equiv \left\langle \left\langle (D\pi _{r_{i}})^{*}\psi ({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)\left| \left( D\pi _{r_{i}}\right) \psi ({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)\right. \right\rangle \right\rangle , \end{aligned}$$
(127)

where straightforward algebra yields

$$\begin{aligned} \left\{ \begin{array}{l} (D\pi _{r_{i}})^{*}\psi ^{*}({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)=\varepsilon i\hbar e^{-\frac{i}{\hbar }r_{(i)}\pi _{r_{i}}^{(o)}} \frac{\partial }{\partial r_{i1}}{\widehat{\psi }}^{*}({\mathbf{r}}^{\prime },r_{i1},t), \\ (D\pi _{r_{i}})\psi ({\mathbf{r}}^{\prime },r_{i},\varepsilon r_{i},t)=-\varepsilon i\hbar e^{\frac{i}{\hbar }r_{(i)}\pi _{r_{i}}^{(o)}} \frac{\partial }{\partial r_{i1}}{\widehat{\psi }}({\mathbf{r}}^{\prime },r_{i1},t). \end{array} \right. \end{aligned}$$
(128)

Hence, noting that one expects \(\hbar ^{2}\left\langle \left\langle \left| \frac{\partial }{\partial r_{i1}}{\widehat{\psi }}({\mathbf{r}} ^{\prime },r_{i1},t)\right| ^{2}\right\rangle \right\rangle \sim 1/O(\varepsilon )\) it follows

$$\begin{aligned} \sigma _{\pi _{r_{i}}}^{2}\equiv \varepsilon ^{2}\hbar ^{2}\left\langle \left\langle \left| \frac{\partial }{\partial r_{i1}}{\widehat{\psi }}( {\mathbf{r}}^{\prime },r_{i1},t)\right| ^{2}\right\rangle \right\rangle \sim O(\varepsilon ), \end{aligned}$$
(129)

and hence the asymptotic estimate

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0}\sigma _{\pi _{r_{i}}}^{2}=0. \end{aligned}$$
(130)

indeed holds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessarotto, M., Cremaschini, C. The Common Logic of Quantum Universe—Part I: The Case of Non-relativistic Quantum Mechanics. Found Phys 52, 30 (2022). https://doi.org/10.1007/s10701-022-00547-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10701-022-00547-z

Keywords

Navigation