Skip to main content
Log in

Propagation Properties of Bound Electromagnetic Field: Classical and Quantum Viewpoints

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The present work is motivated by recent experiments aimed to measure the propagation velocity of bound electromagnetic (EM) field (Missevitch, et al. in EPL 93:64004, 2011; de Sangro et al. in Eur Phys J C 75:137, 2015) that reveal no retardation in the absence of EM radiation. We show how these findings can be incorporated into the mathematical structure of special relativity theory that allows us to reconsider some selected problems of classical and quantum electrodynamics. In particular, we come to the conclusion that the total four-momentum for a classical system “particles plus fields” ought to be a present state function of moving charges if EM radiation is negligible. In quantum domain, we analyze novel definition of the momentum operator recently suggested in the study of quantum phase effects (Kholmetskii et al. in Sci. Rep. 8:11937, 2018). It implies that bound EM field energy and momentum are to be present state functions, too. Being in agreement with reported experiments, these conclusions suggest the necessity to carry out more precise experimental verifications for additional and independent determination of propagation properties of bound EM fields. A scheme of a possible experiment on this subject is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. As is pointed out in Ref. [38], other models of inertial reference frames are also possible, where the operations of measurement obey the requirements of definiteness, reversibility and transitivity. At the same time, as is also shown in [38], all such possible models are equivalent to Einstein’s model of inertial reference frame defined here.

  2. We can add that Eq. (20) can be also derived via the general procedure by Hilbert (see, e.g., [40]), when the Lagrangian density for the system “charged particles and their EM field” is taken in the form [13]

    \(L = - \frac{1}{16\pi }F_{\mu \nu } F^{\mu \nu } - \frac{1}{c}A_{\mu } j^{\mu }\),(i).

    instead of the standard choice for the Lagrangian density, containing only the “field part” (i.e., the first term on rhs of Eq. (i)). However, as soon as the bound EM field component is involved, we have to realize that it cannot exist without its source charges. Therefore, in the general case, where we deal with both bound and radiative EM fields, only the sum of two terms of Eq. (i) (where the second terms stands for the “particles part”) has the physical meaning.

References

  1. Nimtz, G., Haibel, A., Vetter, R.-M.: Pulses reflection by photonic barriers. Phys. Rev. E 66, 037602 (2002)

    ADS  Google Scholar 

  2. Nimtz, G.: Do evanescent modes violate relativistic causality? Lect. Notes Phys. 702, 506–531 (2006)

    MATH  Google Scholar 

  3. Kholmetskii, A.L., Missevitch, O.V., Smirnov-Rueda, R., et al.: Experimental test on the applicability of the standard retardation conditions to bound magnetic fields. J. Appl. Phys. 101, 023532–023543 (2007a)

    ADS  Google Scholar 

  4. Kholmetskii, A.L., Missevitch, O.V., Smirnov-Rueda, R.: Measurement of propagation velocity of bound electromagnetic fields in near zone. J. Appl. Phys. 102, 013529–013542 (2007b)

    ADS  Google Scholar 

  5. Mungai, D., Ranfagni, A., Ruggeri, R.: Observation of superluminal behaviors in wave propagation. Phys. Rev. Lett. 84, 4830–4833 (2011)

    ADS  Google Scholar 

  6. Budko, N.V.: Superluminal, subluminal and negative velocities in free-space electromagnetic propagation. Adv. Imaging Electron. Phys. 165, 47–72 (2011)

    Google Scholar 

  7. Missevitch, O.V., Kholmetskii, A.L., Smirnov-Rueda, R.: Anomalously small retardation of bound (force) field in antenna near zone. EPL 93, 64004–64010 (2011)

    ADS  Google Scholar 

  8. de Sangro, R., Finocchiaro, G., Patteri, P., Piccolo, M., Pizzella, G.: Measuring propagation speed of Coulomb fields. Eur. Phys. J. C 75, 137 (2015)

    ADS  Google Scholar 

  9. Feinberg, G.: Possibility of fasten-than-light particles. Phys. Rev. 159, 1089–1105 (1967)

    ADS  Google Scholar 

  10. Aharonov, Y., Komar, A., Susskind, L.: Superluminal behavior, causality and instability. Phys. Rev. 182, 140–1403 (1969)

    ADS  Google Scholar 

  11. Recami, E.: Classical tachyons and possible applications. Riv. Nuovo Cim. 9, 1–178 (2007)

    MathSciNet  Google Scholar 

  12. Hill, J.M., Cox, B.J.: Einstein’s special relativity beyond the speed of light. Proc. R. Soc. A 468, 4174–4192 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Kholmetskii, A.L., Missevitch, O.V., Yarman, T.: Continuity equations for bound electromagnetic field and electromagnetic energy-momentum tensor. Phys. Scr. 83, 055406 (2011)

    ADS  MATH  Google Scholar 

  14. Kholmetskii, A.L., Missevitch, O.V., Smirnov-Rueda, R., Yarman, T.: Propagation of electromagnetic fields in near and far zones: actualized approach with non-zero trace electromagnetic energy-momentum tensor. Progress Electromagn. Res. M22, 57–72 (2012a)

    Google Scholar 

  15. Kholmetskii, A.L., Missevitch, O.V., Yarman, T.: “4/3 problem”, Poynting theorem and electromagnetic energy-momentum tensor. Can. J. Phys. 93, 691–697 (2015)

    ADS  MATH  Google Scholar 

  16. Kholmetskii, A.L., Yarman, T.: Continuity equations for the bound electromagnetic field. Phys. Scr. 90, 055501 (2015)

    ADS  Google Scholar 

  17. Kholmetskii, A.L., Missevitch, O.V., Yarman, T.: Poynting theorem, relativistic transformation of total energy-momentum and electromagnetic energy-momentum tensor. Found. Phys. 46, 236–261 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Kholmetskii, A.L., Yarman, T.: Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field. EPL 120, 4007 (2017)

    Google Scholar 

  19. Kholmetskii, A.L., Missevitch, O.V., Yarman, T.: Quantum phases for point-like charged particles and for electrically neutral dipoles in an electromagnetic field. Ann. Phys. 392, 49–62 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Kholmetskii, A.L., Yarman, T., Missevitch, O.V., Arik, M.: Quantum phases for moving charges and dipoles in an electromagnetic field and fundamental equations of quantum mechanics. Sci. Rep. 8, 11937 (2018)

    ADS  Google Scholar 

  21. Hertz, H.: Electric waves. Dover, New York (1962)

    Google Scholar 

  22. Smirnov-Rueda, R.: On essential incompleteness of Hertz’s experiments on propagation of electromagnetic interactions. Found Phys. 35, 1 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  24. Jefimenko, O.D.: Electromagnetic Retardation and Theory of Relativity. Electret Scientific Company, Star City (2005)

    Google Scholar 

  25. Rosser, W.G.V.: Interpretation of Classical Electromagnetism, Series: Fundamental Theories of Physics, Vol. 78, edited by A. Merwe, Kluwer, Dordrecht (1977)

  26. Feynman, R., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Redwood City (1989)

    MATH  Google Scholar 

  27. Gitman, D.M., Shabad, A.E., Shishmarev, A.A.: A note on “Measuring propagation speed of Coulomb fields” by R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, G. Pizzella. Eur. Phys. J. C 76, 261 (2016)

    ADS  Google Scholar 

  28. Shabad, A.: A different interpretation of “Measuring propagation speed of Coulomb fields” by R. de Sangro, G. Finocchiaro, P. Patteri, M. Piccolo, G. Pizzella. Eur. Phys. J. C 76, 508 (2016)

    ADS  Google Scholar 

  29. Stefanovich, E.V.: Does Pizzella’s experiment violate causality? J. Phys. Con. Ser. 845, 012016 (2017)

    Google Scholar 

  30. de Sangro, R., Finocchiaro, G., Patteri, P., Piccolo, M., Pizzella, G.: Why the interpretation of “Measuring propagation speed of Coulomb fields” stands. Eur. Phys. J. C 77, 75 (2017)

    ADS  Google Scholar 

  31. Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Dirac, P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Yarman, T.: Wave-like interaction, occurring at superluminal speeds, or the same, de Broglie relationship, as implied by the law of energy conservation: electrically bound particles (Part 1). Int. J. Phys. Sci. 5, 2679–2704 (2010)

    Google Scholar 

  34. Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  35. Kholmetskii, A.L., Missevitch, O.V., Smirnov-Rueda, R., Yarman, T.: Special relativity principle and superluminal velocities. Physics Essays 25, 621–626 (2012b)

    ADS  Google Scholar 

  36. Fock, V.A.: The Theory of Spacetime and Gravitation. Nauka, Moscow (1955).((in Russian))

    Google Scholar 

  37. Møller, C.: The Theory of Relativity. Clarendon Press, Oxford (1973)

    Google Scholar 

  38. Mandelstamm, L.I.: Lectures on Optics. Theory of Relativity and Quantum Mechanics, Nauka (1972)

    Google Scholar 

  39. Rohrlich, F.: Classical Charged Particles. Addison-Wesley, Boston (1965)

    MATH  Google Scholar 

  40. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, 2nd edn. Pergamon Press, New York (1962)

    MATH  Google Scholar 

  41. Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism, 2nd edn. Addison-Wesley, Boston (1962)

    MATH  Google Scholar 

  42. Pauli, W.: Principles of Quantum Mechanics, Encylcopedia of Physics. Springer, Berlin (1958)

    Google Scholar 

  43. Teitelboim, C., Villarroil, D., van Weert, Ch.G.: Classical electrodynamics of retarded fields and point particles. Riv. Nuovo Cimento 3, 1–60 (1980)

    MathSciNet  Google Scholar 

  44. Bethe, H.A., Salpeter, E.: Quantum Mechanics of One- and Two-Electron Atoms. Plenum, New York (1977)

    MATH  Google Scholar 

  45. Berestetskii, V.B., Lifshits, E.M., Pitaevskii, L.P.: Quantum Electrodynamics, 2nd edn. Pergamon Press, Oxford (1982)

    Google Scholar 

  46. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Aharonov, Y., Bohm, D.: Further consideration of electromagnetic potentials in the quantum theory. Phys. Rev. 123, 1511–1524 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Aharonov, Y., Casher, A.: Topological quantum effect for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984)

    ADS  MathSciNet  Google Scholar 

  49. He, X.-G., McKellar, B.H.J.: Topological phase due to electric dipole moment and magnetic monopole interaction. Phys. Rev. A 47, 3424–3425 (1993)

    ADS  Google Scholar 

  50. Wilkens, M.: Quantum phase of a moving dipole. Phys. Rev. Lett. 72, 5 (1994)

    ADS  Google Scholar 

  51. Tonomura, A., Matsuda, T., Suzuki, R., et al.: Observation of Aharonov–Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443 (1982)

    ADS  Google Scholar 

  52. Koenig, M., et al.: Direct observation of the Aharonov–Casher phase. Phys. Rev. Lett. 96, 076804 (2006)

    ADS  Google Scholar 

  53. Gillot, J., et al.: Measurement of the He-McKellar-Wilkens topological phase by atom interferometry and test of its independence with atom velocity. Phys. Rev. Lett. 111, 030401 (2013)

    ADS  Google Scholar 

  54. Fabrizio, M., Morri, A.: Electromagnetism of Continuous Media. Oxdord Uviversity Press, Oxford (2003)

    Google Scholar 

  55. Miffre, A., et al.: Atom interferometry measurement of the electric polarizability of lithium. Eur. Phys. J. D 38, 353–365 (2006)

    ADS  Google Scholar 

  56. Lepoutre, S., et al.: Topological phase in atom interferometry. Phys. Rev. Lett. 109, 120404 (2012)

    ADS  Google Scholar 

  57. Wei, H., Han, R., Wei, X.: Quantum phase of induced dipole moving in a magnetic field. Phys. Rev. Lett. 75, 2071 (1995)

    ADS  Google Scholar 

Download references

Acknowledgment

The authors thank an anonymous reviewer for useful comments and recommendations, which were helpful for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kholmetskii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholmetskii, A.L., Missevitch, O.V., Yarman, T. et al. Propagation Properties of Bound Electromagnetic Field: Classical and Quantum Viewpoints. Found Phys 50, 1686–1722 (2020). https://doi.org/10.1007/s10701-020-00396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00396-8

Keywords

Navigation