Skip to main content
Log in

Quantum Causality Relations and the Emergence of Reality from Coherent Superpositions

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The Hilbert space formalism describes causality as a statistical relation between initial experimental conditions and final measurement outcomes, expressed by the inner products of state vectors representing these conditions. This representation of causality is in fundamental conflict with the classical notion that causality should be expressed in terms of the continuity of intermediate realities. Quantum mechanics essentially replaces this continuity of reality with phase sensitive superpositions, all of which need to interfere in order to produce the correct conditional probabilities for the observable input-output relations. In this paper, I investigate the relation between the classical notion of reality and quantum superpositions by identifying the conditions under which the intermediate states can have real external effects, as expressed by measurement operators inserted into the inner product. It is shown that classical reality emerges at the macroscopic level, where the relevant limit of the measurement resolution is given by the variance of the action around the classical solution. It is thus possible to demonstrate that the classical notion of objective reality emerges only at the macroscopic level, where observations are limited to low resolutions by a lack of sufficiently strong intermediate interactions. This result indicates that causality is more fundamental to physics than the notion of an objective reality, which means that the apparent contradictions between quantum physics and classical physics may be resolved by carefully distinguishing between observable causality and unobservable sequences of hypothetical realities “out there”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29, 631 (1999)

    MathSciNet  Google Scholar 

  2. Brukner, C., Zeilinger, A.: Operationally invariant information in quantum measurements. Phys. Rev. Lett. 83, 3354 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Fuchs, C.: Quantum mechanics as quantum information, mostly. J. Mod. Opt. 50, 987 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Caves, C.M., Fuchs, C.A., Schack, R.: Subjective probability and quantum certainty. Stud. Hist. Philos. Sci. B 38, 255 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Goyal, P.: Information-geometric reconstruction of quantum theory. Phys. Rev. A 78, 052120 (2008)

    ADS  MathSciNet  Google Scholar 

  6. Lee, J.-W.: Quantum mechanics emerges from information theory applied to causal horizons. Found. Phys. 41, 744 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Leifer, M.S., Spekkens, R.W.: Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013)

    ADS  Google Scholar 

  8. Resch, K.J., Lundeen, J.S., Steinberg, A.M.: Experimental realization of the quantum box problem. Phys. Lett. A 324, 125 (2004)

    ADS  MATH  Google Scholar 

  9. Jordan, A.N., Korotkov, A.N., Büttiker, M.: Leggett–Garg inequality with a kicked quantum pump. Phys. Rev. Lett. 97, 026805 (2006)

    ADS  Google Scholar 

  10. Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett. 102, 020404 (2009)

    ADS  Google Scholar 

  11. Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11, 033011 (2009)

    ADS  Google Scholar 

  12. Goggin, M.E., Almeida, M.P., Barbieri, M., Lanyon, B.P., O’Brien, J.L., White, A.G., Pryde, G.J.: Violation of the Leggett–Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. USA. 108, 1256 (2011)

    ADS  Google Scholar 

  13. Suzuki, Y., Iinuma, M., Hofmann, H.F.: Violation of Leggett–Garg inequalities in quantum measurements with variable resolution and back-action. New J. Phys. 14, 103022 (2012)

    MATH  Google Scholar 

  14. Denkmayr, T., Geppert, H., Sponar, S., Lemmel, H., Matzkin, A., Tollaksen, J., Hasegawa, Y.: Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment. Nat. Commun. 5, 4492 (2014)

    ADS  Google Scholar 

  15. Okamoto, R., Takeuchi, S.: Experimental demonstration of a quantum shutter closing two slits simultaneously. Sci. Rep. 6, 35161 (2016)

    ADS  Google Scholar 

  16. Minev, Z., Mundhada, S., Shankar, S., Reinhold, P., Gutierrez-Jauregui, R., Schoelkopf, R.J., Mirrahimi, M., Carmichael, H.J., Devoret, M.H.: To catch and reverse a quantum jump mid-flight. Nature 570, 200 (2019)

    ADS  Google Scholar 

  17. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    ADS  Google Scholar 

  18. Wiseman, H.M.: Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation. Phys. Rev. A 65, 032111 (2002)

    ADS  MathSciNet  Google Scholar 

  19. Hofmann, H.F.: Complete characterization of post-selected quantum statistics using weak measurement tomography. Phys. Rev. A 81, 012103 (2010)

    ADS  Google Scholar 

  20. Hofmann, H.F.: Quasi-determinism of weak measurement statistics: Laplace’s demon’s quantum cousin, e-print arXiv:1005.0654 (2010)

  21. Hosoya, A., Shikano, Y.: Strange weak values. J. Phys. A 43, 385307 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Bednorz, A., Belzig, W.: Quasiprobabilistic interpretation of weak measurements in mesoscopic junctions. Phys. Rev. Lett. 105, 106803 (2010)

    ADS  Google Scholar 

  23. Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Direct measurement of the quantum wavefunction. Nature 474, 188 (2011)

    Google Scholar 

  24. Hofmann, H.F.: On the role of complex phases in the quantum statistics of weak measurements. New J. Phys. 13, 103009 (2011)

    ADS  MATH  Google Scholar 

  25. Lundeen, J.S., Bamber, C.: Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett. 108, 070402 (2012)

    ADS  Google Scholar 

  26. Hofmann, H.F.: Complex joint probabilities as expressions of reversible transformations in quantum mechanics. New J. Phys. 14, 043031 (2012)

    ADS  MATH  Google Scholar 

  27. Morita, T., Sasaki, T., Tsutsui, I.: Complex probability measure and Aharonov’s weak value. Progress of Theoretical and Experimental Physics (2013)

  28. Das, D.: Estimation of quantum states by weak and projective measurements. Phys. Rev. A 89, 062121 (2014)

    ADS  Google Scholar 

  29. Dressel, J.: Weak values as interference phenomena. Phys. Rev. A 91, 032116 (2014)

    ADS  Google Scholar 

  30. Hofmann, H.F.: How weak values emerge in joint measurements on cloned quantum systems. Phys. Rev. Lett. 109, 020408 (2012)

    ADS  Google Scholar 

  31. Bednorz, A., Franke, K., Belzig, W.: Noninvasiveness and time symmetry of weak measurements. New J. Phys. 15, 023043 (2013)

    ADS  MathSciNet  Google Scholar 

  32. Maccone, L., Rusconi, C.C.: State estimation: a comparison between direct state measurement and tomography. Phys. Rev. A 89, 022122 (2014)

    ADS  Google Scholar 

  33. Mochizuki, R.: Weak value as an indicator of back-action. Progress of Theoretical and Experimental Physics (2014)

  34. Ipsen, A.C.: Disturbance in weak measurements and the difference between quantum and classical weak values. Phys. Rev. A 91, 062120 (2014)

    ADS  Google Scholar 

  35. Cohen, E., Pollak, E.: Determination of weak values of quantum operators using only strong measurements. Phys. Rev. A 98, 042112 (2018)

    ADS  MathSciNet  Google Scholar 

  36. Matzkin, A.: Weak values and quantum properties. Found. Phys. 49, 298 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Hofmann, H.F.: Derivation of quantum mechanics from a single fundamental modification of the relations between physical properties. Phys. Rev. A 89, 042115 (2014)

    ADS  Google Scholar 

  38. Hofmann, H.F.: On the fundamental role of dynamics in quantum physics. Eur. Phys. J 70, 118 (2016)

    ADS  Google Scholar 

  39. Hibino, K., Fujiwara, K., Wu, J.-Y., Iinuma, M., Hofmann, H.F.: Derivation of quantum statistics from the action of unitary dynamics. Eur. Phys. J. 133, 118 (2018)

    Google Scholar 

  40. Patekar, K., Hofmann, H.F.: The role of system-meter entanglement in controlling the resolution and decoherence of quantum measurements. New J. Phys. 21, 103006 (2019)

    ADS  MathSciNet  Google Scholar 

  41. Hartle, J.B.: Quantum mechanics with extended probabilities. Phys. Rev. A 78, 012108 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Dressel, J., Bliokh, K.Y., Nori, F.: Classical Field Approach to Quantum Weak Measurements. Phys. Rev. Lett. 112, 110407 (2014)

    ADS  Google Scholar 

  43. Hofmann, H.F.: Quantum paradoxes originating from the nonclassical statistics of physical properties related to each other by half-periodic transformations. Phys. Rev. A 91, 062123 (2015)

    ADS  Google Scholar 

  44. Hofmann, H.F.: Quantum interference of position and momentum: a particle propagation paradox. Phys. Rev. A 96, 020101(R) (2017)

    ADS  Google Scholar 

  45. Hofmann, H.F.: Control of particle propagation beyond the uncertainty limit by interference between position and momentum. Phys. Rev. A 98, 052104 (2018)

    Google Scholar 

  46. Hofmann, H.F.: A quantum magic bullet: hitting two targets without a clear line-of-sight, e-print arXiv:1909.09259 (2019)

Download references

Acknowledgements

This work has been supported by JST-CREST (JPMJCR1674), Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger F. Hofmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, H.F. Quantum Causality Relations and the Emergence of Reality from Coherent Superpositions. Found Phys 50, 1809–1823 (2020). https://doi.org/10.1007/s10701-020-00346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-020-00346-4

Keywords

Navigation