Skip to main content
Log in

How Downwards Causation Occurs in Digital Computers

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Digital computers carry out algorithms coded in high level programs. These abstract entities determine what happens at the physical level: they control whether electrons flow through specific transistors at specific times or not, entailing downward causation in both the logical and implementation hierarchies. This paper explores how this is possible in the light of the alleged causal completeness of physics at the bottom level, and highlights the mechanism that enables strong emergence (the manifest causal effectiveness of application programs) to occur. Although synchronic emergence of higher levels from lower levels is manifestly true, diachronic emergence is generically not the case; indeed we give specific examples where it cannot occur because of the causal effectiveness of higher level variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. There are of course lower levels than Level 0 in Table 2, as described by the standard model of particle physics, which may in turn depend on even lower levels such as string theory/M theory. They are of no concern to us here.

  2. See the Appendix of [14].

  3. We thank an anonymous referee for this comment

  4. We thank an anonymous referee for this comment.

  5. Try writing a complex program in Assembly language [2, pp. 507–521], or much worse, Machine code! The name of Grace Hopper should be up there with the panoply of computer greats such as Charles Babbage, Ada Lovelace, Alan Turing, and John von Neumann: see Wikipedia, ‘Grace Hopper’.

References

  1. Anderson, P.W.: More is different. Science 177, 393–396 (1972)

    Article  ADS  Google Scholar 

  2. Tanenbaum, A.S.: Structured Computer Organisation, 5th edn. Prentice Hall, Englewood Cliffs (2006)

    Google Scholar 

  3. Leggett, A.J.: On the nature of research in condensed-state physics. Found. Phys. 22, 221–233 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hohwy, J., Kallestrup, J. (eds.): Being Reduced. Oxford University Press, Oxford (2008)

    Google Scholar 

  5. Humphreys, P.: Emergence: A Philosophical Account. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  6. Gibb, S., Hendry, R.F., Lancaster, T. (eds.): The Routledge Handbook of Emergence. Routledge, Abingdon (2019)

    Google Scholar 

  7. Ellis, G.F.R., Noble, D., O’Connor, T.: Downward causation: an integrating theme within and across the sciences? Interface Focus 2, 19 (2011)

    Google Scholar 

  8. Ellis, G.: How can Physics Underlie the Mind: Downward Causation in the Human Context. Berlin, Springer (2016)

    Book  Google Scholar 

  9. Noble, D.: A theory of biological relativity: no privileged level of causation. Interface Focus 2, 55–64 (2011)

    Article  Google Scholar 

  10. MacCormick, J.: Nine Algorithms that Changed the Future: The Ingenious Ideas that Drive Today’s Computers. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  11. Menzies, P.: Counterfactual theories of causation. In: Zalta, E.N. (eds.) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/win2017/entries/causation-counterfactual/ (2017)

  12. Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1996)

    Google Scholar 

  13. Mellisinos, A.C.: Principles of Modern Technology. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  14. Ellis, G., Kopel, J.: The dynamical emergence of biology from physics: branching causation via biomolecules. Front. Physiol. (2019). https://doi.org/10.3389/fphys.2018.01966/full

  15. Blachowicz, J.: The constraint interpretation of physical emergence. J. Gen. Philos. Sci. 44, 21–40 (2013)

    Article  Google Scholar 

  16. Booch, G.: Object Oriented Analysis and Design with Application. Pearson Education India, New Delhi (2006)

    MATH  Google Scholar 

  17. Auletta, G., Ellis, G.F., Jaeger, L.: Top-down causation by information control: from a philosophical problem to a scientific research programme. J. R. Soc. Interface 5, 1159–1172 (2008)

    Article  Google Scholar 

  18. Anthony, L.M.: Multiple realisation: keeping it real. In: Hohwy, J., Kallestrup, J. (eds.) Being Reduced, pp. 164–175. Oxford University Press, Oxford (2008)

    Chapter  Google Scholar 

  19. Bickle, J.: Multiple realizability. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/spr2019/entries/multiple-realizability/ (2019)

  20. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java Virtual Machine Specification. Pearson Education, London (2014)

    Google Scholar 

  21. Lafore, R.: Data Structures and Algorithms in Java. SAMS, Indianapolis (2002)

    Google Scholar 

  22. Ross Ashby, W.: Design for a Brain. Chapman and Hall, London (1952)

    Google Scholar 

  23. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers, Principles, Techniques, and Tools. Addison Wesley, Boston (2006)

    MATH  Google Scholar 

  24. Knuth, D.E.: The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison-Wesley, Reading (1973)

    MATH  Google Scholar 

  25. Simon, S.H.: The Oxford Solid State Basics. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  26. Phillips, P.: Advanced Solid State Physics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  27. Schwabl, F.: Quantum Mechanics. Springer, Berlin (2007)

    MATH  Google Scholar 

  28. Solyom, J.: fundamentals of the Physics of Solids Volume II: Electronic Properties. Springer, Berlin (2009)

    Book  Google Scholar 

  29. Primas, H.: Emergence in exact natural science. Acta Polytech. Scand. 91, 83–98 (1998)

    MathSciNet  Google Scholar 

  30. Chibbaro, S., Rondoni, L., Vulpiani, A.: Reductionism, Emergence, and Levels of Reality. Springer, Berlin (2014)

    Book  Google Scholar 

  31. Drossel, B., Ellis, G.: Contextual wavefunction collapse: an integrated theory of quantum measurement. New J. Phys. 20, 113025 (2018)

    Article  ADS  Google Scholar 

  32. Abelson, H., Sussman, J.S.: Structure and Interpretation of Computer Programs. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  33. Bogacz, R.: A tutorial on the free-energy framework for modelling perception and learning. J. Math. Psychol. 76, 198–211 (2017)

    Article  MathSciNet  Google Scholar 

  34. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA (1996)

    MATH  Google Scholar 

  35. Ghirardi, G.: Sneaking a Look at God’s Cards: Unraveling the Mysteries of Quantum Mechanics. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  36. O’Gorman, T.J., et al.: Field testing for cosmic ray soft errors in semiconductor memories. IBM J. Res. Dev. 40, 41–50 (1996)

    Article  Google Scholar 

  37. Robb, D., Heil, J.: Mental causation. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Summer 2019 Edition). https://plato.stanford.edu/archives/sum2019/entries/mental-causation/

  38. Ellis, G.F.R.: Physics, complexity and causality. Nature 435, 743 (2005)

    Article  ADS  Google Scholar 

  39. Watson, J.D.: Molecular Biology of the Gene. Pearson Education India, New Delhi (2004)

    Google Scholar 

  40. Berridge, M.: Cell Signalling Biology. Portland Press, London (2014)

    Google Scholar 

  41. Karplus, M.: Development of multiscale models for complex chemical systems: from H+ H2 to biomolecules. Angew. Chem. Int. Ed. 53, 9992–10005 (2014)

    Article  Google Scholar 

  42. Thompson, C.: Coders: Who They are, What They Think, and How They are Changing the World. Picador, London (2019)

    Google Scholar 

  43. Bissell, T.: ZUCKED: Waking Up to the Facebook Catastrophe. Penguin Random House, New York (2019)

    Google Scholar 

Download references

Acknowledgements

We thank Steven Simon and Oxford University Press for permission to reproduce Figs. 2 and 3 from [25]. This project was completed while both authors were visiting the Quantum Research Group at the University of KwaZulu Natal (UKZN), and we thank Francesco Petruccione for his hospitality at UKZN and support from his research grant number 64812: National Research Foundation (South African Research Chair). We thank an anonymous referee for very helpful comments on a previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Ellis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, G., Drossel, B. How Downwards Causation Occurs in Digital Computers. Found Phys 49, 1253–1277 (2019). https://doi.org/10.1007/s10701-019-00307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00307-6

Keywords

Navigation