Skip to main content
Log in

Modern Physics and Number Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Despite the efforts of many individuals, the disciplines of modern physics and number theory have remained largely divorced, in the sense that the experimentally verified theories of quantum physics and gravity are written in the language of linear algebra and advanced calculus, without reference to several established branches of pure mathematics. This absence raises questions as to whether or not pure mathematics has undiscovered application to physical modeling that could have far reaching implications for human scientific understanding. In this paper, we review physical interpretations of number theoretic concepts developed in the twentieth century, in an attempt to help bridge the divide between pure mathematical truth and testable physical theory. Specifically, the relevance of L-functions and modular forms to the physics of quantum and classical physical systems is addressed, with the objective of motivating general interest among physicists in these mathematical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alvarez-Gaume, L., Moore, G., Vafa, C.: Theta functions, modular invariance, and strings. Commun. Math. Phys. 106(1), 1–40 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Arthur, J., Gelbart, S.: Lectures on automorphic l-functions. L-functions and arithmetic (Durham, 1989), 153, 1–59 (1991)

  3. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38(1), 364 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Barrett, O., Firk, F.W.K., Miller, S.J., Turnage-Butterbaugh, C.: From quantum systems to l-functions: pair correlation statistics and beyond. In: John, N., Michael, R. (eds.) Open Problems in Mathematics, pp. 123–171. Springer, Cham (2016)

    Chapter  Google Scholar 

  5. Bena, I., Droz, M., Lipowski, A.: Statistical mechanics of equilibrium and nonequilibrium phase transitions: the Yang–Lee formalism. Int. J. Mod. Phys. B 19(29), 4269–4329 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Berry, M.V.: Semi-classical mechanics in phase space: a study of wigner’s function. Philos. Trans. R. Soc. Lond. A 287(1343), 237–271 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brox, D.: The riemann hypothesis and emergent phase space. J. Mod. Phys. 8(04), 459 (2017)

    Article  Google Scholar 

  8. Bump, D.: Automorphic Forms and Representations, vol. 55. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  9. Chaikin, P.M., Lubensky, T.C., Witten, T.A.: Principles of Condensed Matter Physics, vol. 1. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  10. Dunajski, M.: Twistor theory and differential equations. J. Phys. A 42(40), 404004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyson, F.: Random matrices, neutron capture levels, quasicrystals, and zeta-function zeros. In: MSRI workshop on Random Matrix Theory, Berkeley, California (2002)

  12. Engel, D., Main, J., Wunner, G.: Higher-order energy level spacing distributions in the transition region between regularity and chaos. J. Phys. A 31(33), 6965 (1998)

    Article  ADS  MATH  Google Scholar 

  13. Feynman, R.P.: Quantum Electrodynamics. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  14. Firk, F.W.K., Miller, S.J.: Nuclei, primes and the random matrix connection. Symmetry 1(1), 64–105 (2009)

    Article  MathSciNet  Google Scholar 

  15. Flores, S.M.: Correlation functions in two-dimensional critical systems with conformal symmetry (2012)

  16. Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98(4), 819–855 (1980)

    Article  ADS  MATH  Google Scholar 

  17. Friedan, D.H.: Nonlinear models in 2+ \(\varepsilon \) dimensions. Ann. Phys. 163(2), 318–419 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gaudin, M.: Sur la loi limite de l’espacement des valeurs propres d’une matrice ale’ atoire. Nucl. Phys. 25, 447–458 (1961)

    Article  MATH  Google Scholar 

  19. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (2014)

    MATH  Google Scholar 

  20. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics, vol. 1. Springer, Berlin (2013)

    MATH  Google Scholar 

  21. Hawking, S., Maldacena, J., Strominger, A.: Desitter entropy, quantum entanglement and ads/cft. J. High Energy Phys. 2001(05), 001 (2001)

    Article  Google Scholar 

  22. Herglotz, G.: On bodies that are to be designated as rigid from the standpoint of the relativity principle. Annalen der Physik 336(2), 393–415 (1910)

    Article  ADS  Google Scholar 

  23. Horowitz, G.T., Polchinski, J.: Gauge/gravity duality. In: Oriti, D. (ed.) Approaches to Quantum Gravity, pp. 169–186. Cambridge University Press, Cambridge (2009)

    Chapter  MATH  Google Scholar 

  24. Jackson, J.D., Okun, L.B.: Historical roots of gauge invariance. Rev. Mod. Phys. 73(3), 663 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kac, V.G.: Modular invariance in mathematics and physics. In: Proceedings of the AMS Centennial Symposium (1992 American Mathematical Society), vol. 337 (1988)

  26. Kasman, A.: Glimpses of Soliton Theory: The Algebra and Geometry of Nonlinear PDEs. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  27. Katz, N., Sarnak, P.: Zeroes of zeta functions and symmetry. Bull. Am. Math. Soc. 36(1), 1–26 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Keating, J.P., Snaith, N.C.: Random matrices and l-functions. J. Phys. A: Math. Gen. 36(12), 2859 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. King, S.F., Luhn, C.: A new family symmetry for so (10) guts. Nucl. Phys. B 820(1–2), 269–289 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Klitzing, K., Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45(6), 494 (1980)

    Article  ADS  Google Scholar 

  31. Koblitz, N.I.: Introduction to Elliptic Curves and Modular Forms, vol. 97. Springer, Berlin (2012)

    MATH  Google Scholar 

  32. Kraichnan, R.H., Chen, S.: Is there a statistical mechanics of turbulence? Physica D 37(1–3), 160–172 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Krichever, I.M., Novikov, S.P.: Algebras of virasoro type, energy-momentum tensor, and decomposition operators on riemann surfaces. Funct. Anal. Appl. 23(1), 19–33 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Landau, L.D., Lifshitz, E.M.: Statistical physics, part 1 (course of theoretical physics, volume 5) Butterworth-Heinemann, 3 edition (1980)

  35. Langlands, R.P: L-functions and automorphic representations. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 165–175 (1978)

  36. Lapidus, M.L., et al.: Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes. American Mathematical Society, Providence (2008)

    Book  MATH  Google Scholar 

  37. Lederer-Woods, C.: Neutron capture measurements on \({}^{77,78}\)se and \({}^{68}\)zn, and the origin of selenium in massive stars. Technical report (2017)

  38. Lee, T.-D., Yang, C.-N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and ising model. Phys. Rev. 87(3), 410 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Lisi, A.G.: An exceptionally simple theory of everything. arXiv preprint arXiv:0711.0770 (2007)

  40. Mawhin, J., Ronveaux, A.: Schrödinger and dirac equations for the hydrogen atom, and Laguerre polynomials. Arch. Hist. Exact Sci. 64(4), 429–460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mazur, B: Eigenvalues of frobenius acting on algebraic varieties over finite fields. In: Algebraic Geometry (Proc. Sympos. Pure Math., vol. 29, Humboldt State Univ., Arcata, Calif., 1974), pp. 231–261 (1975)

  42. Miller, A.I.: Deciphering the Cosmic Number: The Strange Friendship of Wolfgang Pauli and Carl Jung. WW Norton & Company, New York (2009)

    Google Scholar 

  43. Odlyzko, A.M.: On the distribution of spacings between zeros of the zeta function. Math. Comput. 48(177), 273–308 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pandey, A., Mehta, M.L.: Gaussian ensembles of random Hermitian matrices intermediate between orthogonal and unitary ones. Commun. Math. Phys. 87(4), 449–468 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Penrose, R.: Twistor theory-its aims and achievements. In: Quantum Gravity; Proceedings of the Oxford Symposium, Harwell, Berks., England, February 15, 16, 1974 (A76-11051 01-90) Oxford, Clarendon Press, 1975, pp. 268–407, pp. 268–407, (1975)

  46. Prestage, J.D., Tjoelker, R.L., Maleki, L.: Atomic clocks and variations of the fine structure constant. Phys. Rev. Lett. 74(18), 3511 (1995)

    Article  ADS  Google Scholar 

  47. Randall, L.: Warped Passages: Unravelling the Universe’s Hidden Dimensions. Penguin, London (2006)

    MATH  Google Scholar 

  48. Rudnick, Z., Sarnak, P., et al.: Zeros of principal l-functions and random matrix theory. Duke Math. J. 81(2), 269–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ruelle, D.: Dynamical zeta functions and transfer operators. Preprint IHES/M/02/66 (2002)

  50. Saff, E.B., Snider, A.D.: Fundamentals of Complex Analysis for Mathematics, Science, and Engineering. Number BOOK. Prentice-Hall, Upper Saddle River (1976)

    MATH  Google Scholar 

  51. Sarnak, P.: Problems of the millennium: the Riemann hypothesis. Clay Mathematics Institute (2004)

  52. Shimura, G.: Automorphic forms and the periods of abelian varieties. J. Math. Soc. Jpn. 31(3), 561–592 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sommerfeld, A.: Atomic Structure and Spectral Lines. Methuen & Co., London (1923)

    Google Scholar 

  54. Stepanenko, D., Bonesteel, N.E., DiVincenzo, D.P., Burkard, G., Loss, D.: Spin-orbit coupling and time-reversal symmetry in quantum gates. Phys. Rev. B 68(11), 115306 (2003)

    Article  ADS  Google Scholar 

  55. Varchenko, A.: Multidimensional hypergeometric functions in conformal field theory, algebraic k-theory, algebraic geometry. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 281–300. Citeseer (1990)

  56. Verlinde, E.: On the origin of gravity and the laws of newton. J. High Energy Phys. 2011(4), 29 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. Weinberg, S.: The Quantum Theory of Fields. Foundations. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  58. Witten, E.: D= lo superstring theory. In: Jaffe, A., Parisi, G., Ruelle, D. (eds.) Progress in Physics, vol. 9, p. 395. Springer, Berlin (1987)

    Google Scholar 

  59. Yang, C.-N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70(9), 1187 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Brox.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brox, D. Modern Physics and Number Theory. Found Phys 49, 837–853 (2019). https://doi.org/10.1007/s10701-019-00266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00266-y

Keywords

Navigation