Skip to main content
Log in

Model Astrophysical Configurations with the Equation of State of Chaplygin Gas

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We use the Tolman–Oppenheimer–Volkoff equations for a Chaplygin type fluid to study, analytically and numerically, the global behavior of static solutions of spherically symmetric objects. Two possible regimes are especially investigated. The first one is the phantom regime in which the pressure module exceeds the energy density. In this case the equator is absent and all the solutions have the geometry of a truncated spheroid with the same kind of singularity. The second case is the normal regime for which we determine all the solutions, excluding the de Sitter one, corresponding to a tri-dimensional spheroidal geometry. Beyond the equator, three possible cases are considered; the first case has a closed spheroid characterized by a Schwarzschild-kind singularity with an infinite blue-shift at the south pole, the second case configuration has a regular spheroid and the third case has configuration of a truncated spheroid having a scalar curvature singularity to a finite value of the radial distance. We also compare all the geometric configurations with ones obtained in the special case of Chaplygin gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999)

    Article  ADS  MATH  Google Scholar 

  2. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronom. J. 116(3), 1009 (1998)

    Article  ADS  Google Scholar 

  3. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75(2), 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Amendola, L.: Coupled quintessence. Phys. Rev. D 62(4), 043511 (2000)

    Article  ADS  Google Scholar 

  5. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with ω < –1 causes a cosmic doomsday. Phys. Rev. Lett. 91(7), 071301 (2003)

    Article  ADS  Google Scholar 

  6. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Essentials of k-essence. Phys. Rev. D 63(10), 103510 (2001)

    Article  ADS  Google Scholar 

  7. Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511(2), 265–268 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Bilić, N., Tupper, G.B., Viollier, R.D.: Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas. Phys. Lett. B 535(1), 17–21 (2002)

    Article  ADS  MATH  Google Scholar 

  9. Fabris, J.C., Gonçalves, S.V.B., de Souza, P.E.: Letter: density perturbations in a universe dominated by the Chaplygin gas. Gen. Relativ. Gravit. 34(1), 53–63 (2002)

    Article  MATH  Google Scholar 

  10. Gorini, V., Kamenshchik, A., Moschella, U.: Can the Chaplygin gas be a plausible model for dark energy. Phys. Rev. D 67(6), 063509 (2003)

    Article  ADS  Google Scholar 

  11. Gorini, V. et al.: The Chaplygin gas as a model for dark energy. arXiv preprint gr-qc/0403062 (2004)

  12. Gorini, V., et al.: Stability properties of some perfect fluid cosmological models. Phys. Rev. D 72(10), 103518 (2005)

    Article  ADS  Google Scholar 

  13. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas and cosmic microwave background radiation constraints. Phys. Rev. D 67(6), 063003 (2003)

    Article  ADS  Google Scholar 

  14. Biesiada, M., Godłowski, W., Szydłowski, M.: Generalized Chaplygin gas models tested with type Ia supernovae. Astrophys. J. 622(1), 28 (2005)

    Article  ADS  Google Scholar 

  15. Bilić, N., Tupper, G.B., Viollier, R.D.: Born–Infield phantom gravastars. J. Cosmol. Astropart. Phys. 2006(02), 013 (2006)

    Article  Google Scholar 

  16. Errehymy, A., Daoud, M., Jammari, M.K.: Phantom gravastar supported for the explanation to compact dark matter objects. Eur. Phys. J. Plus 132(11), 497 (2017)

    Article  Google Scholar 

  17. Bertolami, O., Paramos, J.: Chaplygin dark star. Physical Review D 72(12), 123512 (2005)

    Article  ADS  Google Scholar 

  18. Lipscombe, T.C.: Self-gravitating clouds of generalized Chaplygin and modified anti-Chaplygin gases. Phys. Scr. 83(3), 035901 (2011)

    Article  ADS  MATH  Google Scholar 

  19. Tolman, R.C.: Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. 20(3), 169–176 (1934)

    Article  ADS  MATH  Google Scholar 

  20. Bento, M.C., Bertolami, O., Sen, A.A.: Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification. Phys. Rev. D 66(4), 043507 (2002)

    Article  ADS  Google Scholar 

  21. Lemaître, A.G.: The expanding universe. Gen. Relativ. Gravit. 29(5), 641–680 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bondi, H.: Spherically symmetrical models in general relativity. Mon. Not. R. Astron. Soc. 107(5-6), 410–425 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelghani Errehymy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errehymy, A., Daoud, M. Model Astrophysical Configurations with the Equation of State of Chaplygin Gas. Found Phys 49, 144–175 (2019). https://doi.org/10.1007/s10701-019-00237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00237-3

Keywords

Navigation