Skip to main content
Log in

Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Having analyzed the formal aspects of Wallace’s proof of the Born rule, we now discuss the concepts and axioms upon which it is built. Justification for most axioms is shown to be problematic, and at times contradictory. Some of the problems are caused by ambiguities in the concepts used. We conclude the axioms are not reasonable enough to be taken as mandates of rationality in Everettian Quantum Mechanics. This invalidates the interpretation of Wallace’s result as meaning it would be rational for Everettian agents to decide using the Born rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For simplicity, we assume the system remains in state \(\left| i \right\rangle \), but this is not necessary.

  2. Reflecting its stochastic approach, Consistent Histories is usually presented using density operators.

  3. With operations \(P_1\wedge P_2=P_1P_2\), \(P_1\vee P_2=P_1+P_2-P_1P_2\), and \(\lnot P=\mathbb {1}-P\).

  4. The terminology varies. Wallace uses consistency for additivity of probabilities, and decoherence for non-interference, which gets mixed with the related, but not equivalent, concept from Sect. 2.3.1.

  5. Branching-Decoherence Theorem, in Wallace’s terminology.

  6. In Gell-Mann and Hartle’s terminology, medium decoherence.

  7. If necessary, different families of cells can be used at each time.

  8. In [52, p. 175] it says conjunction, but Wallace clearly means disjunction.

  9. As noted in [36], it should be \(\{0\}\) instead of \(\emptyset \), and there is a missing hypothesis, that \(E\wedge F=\{0\}\).

  10. M is null for\(\psi \)andU iff, whenever acts \(V_1\) and \(V_2\) are identical on \(M^\perp \), \(V_1U\sim _\psi V_2U\), i.e. the agent at \(\psi \) is indifferent to what happens in M after U. The reason should be that \(U\psi \) has no branches in M, but there are problems with this concept [36].

  11. Of course, this brings the whole decision theoretic approach into question.

  12. There is nothing unphysical in a horned horse, even if in our world no such species has evolved.

References

  1. Albert, D.: Time and Chance. Harvard University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Albert, D.: Probability in the Everett picture. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 355–368. Oxford University Press, Oxford (2010)

    Chapter  Google Scholar 

  3. Albert, D., Loewer, B.: Interpreting the many worlds interpretation. Synthese 77(2), 195–213 (1988)

    Article  MathSciNet  Google Scholar 

  4. Assis, A.: On the nature of \(a_k *a_k\) and the emergence of the Born rule. Ann. Phys. 523(11), 883–897 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baker, D.: Measurement outcomes and probability in Everettian quantum mechanics. Stud. Hist. Philos. Sci. Part B 38(1), 153–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnum, H., Caves, C., Finkelstein, J., Fuchs, C., Schack, R.: Quantum probability from decision theory? Proc. R. Soc. Lond. 456, 1175–1182 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buniy, R., Hsu, S., Zee, A.: Discreteness and the origin of probability in quantum mechanics. Phys. Lett. B 640(4), 219–223 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Carroll, S., Sebens, C.: Many worlds, the Born rule, and self-locating uncertainty. In: Struppa, D., Tollaksen, J. (eds.) Quantum Theory: A Two-Time Success Story: Yakir Aharonov Festschrift, pp. 157–170. Springer, London (2013)

    Google Scholar 

  10. Dawid, R., Thébault, K.: Against the empirical viability of the Deutsch–Wallace–Everett approach to quantum mechanics. Stud. Hist. Philos. Sci. Part B 47, 55–61 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deutsch, D.: Quantum theory of probability and decisions. Proc. R. Soc. Lond. 455, 3129–3137 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. DeWitt, B., Graham, N. (eds.): The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  13. Dizadji-Bahmani, F.: The probability problem in Everettian quantum mechanics persists. Br. J. Philos. Sci. 66(2), 257–283 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dizadji-Bahmani, F.: Why i am not an Everettian. In: Karakostas, V., Dieks, D. (eds.) EPSA11 Perspectives and Foundational Problems in Philosophy of Science, pp. 219–228. Springer, Cham (2013)

    Chapter  Google Scholar 

  15. Dowker, F., Kent, A.: On the consistent histories approach to quantum mechanics. J. Stat. Phys. 82(5), 1575–1646 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Engesser, K., Gabbay, D., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures: Quantum Logic. Handbook of Global Analysis. Elsevier Science, San Diego (2009)

    MATH  Google Scholar 

  17. Everett III, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454–462 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  18. Finkelstein, J.: Has the Born rule been proven? arXiv:0907.2064 (2009)

  19. Gell-Mann, M., Hartle, J.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.) Complexity, Entropy and the Physics of Information, pp. 425–458. Addison-Wesley, Reading (1990)

    Google Scholar 

  20. Gell-Mann, M., Hartle, J.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gleason, A.: Measures on the closed subspaces of a hilbert space. J. Math. Mech. 6(6), 885–893 (1957)

    MathSciNet  MATH  Google Scholar 

  22. Graham, N.: The measurement of relative frequency. In: DeWitt, B., Graham, N. (eds.) The Many Worlds Interpretation of Quantum Mechanics, pp. 229–253. Princeton University Press, Princeton (1973)

    Google Scholar 

  23. Griffiths, R.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1), 219–272 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Griffiths, R.: Consistent interpretation of quantum mechanics using quantum trajectories. Phys. Rev. Lett. 70, 2201–2204 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Griffiths, R.: Consistent Quantum Theory. Cambrigde University Press, Cambrigde (2002)

    MATH  Google Scholar 

  26. Hanson, R.: When worlds collide: quantum probability from observer selection? Found. Phys. 33(7), 1129–1150 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hemmo, M., Pitowsky, I.: Quantum probability and many worlds. Stud. Hist. Philos. Mod. Phys. 38(2), 333–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jansson, L.: Everettian quantum mechanics and physical probability: against the principle of state supervenience. Stud. Hist. Philos. Sci. Part B 53, 45–53 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Joos, E., Zeh, H., Kiefer, C., Giulini, D., Kupsch, J., Stamatescu, I.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  30. Karni, E.: Axiomatic foundations of expected utility and subjective probability. In: Machina, M., Viscusi, K. (eds.) Handbook of the Economics of Risk and Uncertainty, vol. 1, pp. 1–39. Amsterdam, Amsterdam (2014)

    Google Scholar 

  31. Kent, A.: One world versus many: the inadequacy of everettian accounts of evolution, probability, and scientific confirmation. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 369–390. Oxford University Press, Oxford (2010)

    Google Scholar 

  32. Kreps, D.: Notes on the Theory of Choice. Underground Classics in Economics. Westview Press, Boulder (1988)

    Google Scholar 

  33. Lewis, P.: Quantum Ontology: A Guide to the Metaphysics of Quantum Mechanics. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  34. Mallah, J.: Decision theory is a red herring for the many worlds interpretation. arXiv:0808.2415 (2008)

  35. Mandolesi, A.: Everettian decoherent histories and causal histories. arXiv:1704.01173 (2017)

  36. Mandolesi, A.: Analysis of Wallace’s proof of the Born rule in Everettian quantum mechanics: formal aspects. Found. Phys. 48(7), 751–782 (2018). https://doi.org/10.1007/s10701-018-0179-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Maudlin, T.: Critical study David Wallace, the emergent multiverse: quantum theory according to the Everett interpretation. Oxford University Press, 2012, 530 + xv pp. Noûs 48(4), 794–808 (2014). https://doi.org/10.1111/nous.12072

    Article  Google Scholar 

  38. Omnès, R.: Logical reformulation of quantum mechanics. I. Foundations. J. Stat. Phys. 53(3), 893–932 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Omnès, R.: Understanding Quantum Mechanics. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  40. Parmigiani, G., Inoue, L.Y.T.: Decision Theory: Principles and Approaches. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  41. Polley, L.: Position eigenstates and the statistical axiom of quantum mechanics. Found. Probab. Phys. 1, 314–320 (2001)

    Article  MathSciNet  Google Scholar 

  42. Price, H.: Probability in the Everett world: Comments on Wallace and Greaves. arXiv:quant-ph/0604191 (2006)

  43. Price, H.: Decisions, decisions, decisions: can savage salvage Everettian probability? In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 369–390. Oxford University Press, Oxford (2010)

    Chapter  Google Scholar 

  44. Read, J.: In defence of Everettian decision theory. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. (2018). https://doi.org/10.1016/j.shpsb.2018.01.005

  45. Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.): Many Worlds? Everett, Quantum Theory & Reality. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  46. Savage, L.: The Foundations of Statistics, 2nd edn. Dover, New York (1972)

    MATH  Google Scholar 

  47. Schlosshauer, M.: Decoherence: and the Quantum-to-Classical Transition. The Frontiers Collection. Springer, New York (2007)

    Google Scholar 

  48. Sebens, C., Carroll, S.: Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. Br. J. Philos. Sci. (2016). https://doi.org/10.1093/bjps/axw004

  49. Wallace, D.: Everettian rationality: defending deutsch’s approach to probability in the Everett interpretation. Stud. Hist. Philos. Sci. Part B 34, 415–439 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wallace, D.: Quantum probability from subjective likelihood: improving on Deutsch’s proof of the probability rule. Stud. Hist. Philos. Sci. Part B 38, 311–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wallace, D.: How to prove the born rule. In: Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.) Many Worlds? Everett, Quantum Theory & Reality, pp. 227–263. Oxford University Press, Oxford (2010)

    Chapter  Google Scholar 

  52. Wallace, D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  53. Wilson, A.: Objective probability in Everettian quantum mechanics. Br. J. Philos. Sci. 64(4), 709–737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zurek, W.: Decoherence and the transition from quantum to classical—revisited. Los Alamos Sci. 27, 86–109 (2002)

    Google Scholar 

  55. Zurek, W.: Probabilities from entanglement, born’s rule \({p}_{k}={\mid {\psi }_{k}\mid }^{2}\) from envariance. Phys. Rev. A 71, 052,105 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André L. G. Mandolesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandolesi, A.L.G. Analysis of Wallace’s Proof of the Born Rule in Everettian Quantum Mechanics II: Concepts and Axioms. Found Phys 49, 24–52 (2019). https://doi.org/10.1007/s10701-018-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0226-4

Keywords

Navigation