Skip to main content
Log in

Cosmological Constraints from Low-Redshift Data

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we summarise the constraints that low-redshift data—such as supernovae Ia (SN Ia), baryon acoustic oscillations (BAO) and cosmic chronometers (CC)—are able to set on the concordance model and its extensions, as well as on inhomogeneous but isotropic models. We provide a broad overlook into these cosmological scenarios and several aspects of data analysis. In particular, we review a number of systematic issues of SN Ia analysis that include magnitude correction techniques, selection bias and their influence on the inferred cosmological constraints. Furthermore, we examine the isotropic and anisotropic components of the BAO data and their individual relevance for cosmological model-fitting. We extend the discussion presented in earlier works regarding the inferred dynamics of cosmic expansion and its present rate from the low-redshift data. Specifically, we discuss the cosmological constraints on the accelerated expansion and related model-selections. In addition, we extensively talk about the Hubble constant problem, then focus on the low-redshift data constraint on \(H_0\) that is based on CC. Finally, we present the way in which this result compares to the high-redshift \(H_0\) estimate and local (redshift zero) measurements that are in tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Uncertainty in the measurement of SN redshift can easily be included, as will be necessary for future data.

  2. Please refer to Wei [250], Amati et al. [12,13,14], Haridasu et al. [109] for more detailed discussion on the GRB dataset.

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., et al.: A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85 (2017a)

    Article  ADS  Google Scholar 

  2. Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017b)

    Article  ADS  Google Scholar 

  3. Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017c)

    Article  ADS  Google Scholar 

  4. Addison, G.E., Watts, D.J., Bennett, C.L., et al.: Elucidating \(\varLambda \)CDM: impact of baryon acoustic oscillation measurements on the hubble constant discrepancy. (2017). arXiv:1707.06547

  5. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Alam, S., Ata, M., Bailey, S., et al.: The clustering of galaxies in the completed SDSS-III Baryon oscillation spectroscopic survey: cosmological analysis of the DR12 galaxy sample. MNRAS 470, 2617 (2017)

    Article  ADS  Google Scholar 

  7. Alam, U., Sahni, V., Deep Saini, T., Starobinsky, A.A.: Exploring the expanding Universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    Article  ADS  Google Scholar 

  8. Alcock, C., Paczyński, B.: An evolution free test for non-zero cosmological constant. Nature 281, 358 (1979)

    Article  ADS  Google Scholar 

  9. Alnes, H., Amarzguioui, M.: CMB anisotropies seen by an off-center observer in a spherically symmetric inhomogeneous universe. Phys. Rev. D 74, 103520 (2006)

    Article  ADS  Google Scholar 

  10. Alnes, H., Amarzguioui, M., Grøn, Ø.: Inhomogeneous alternative to dark energy? Phys. Rev. D 73, 083519 (2006)

    Article  ADS  Google Scholar 

  11. Alonso, D., García-Bellido, J., Haugbølle, T., Vicente, J.: Large scale structure simulations of inhomogeneous Lemaître-Tolman-Bondi void models. Phys. Rev. D 82, 123530 (2010)

    Article  ADS  Google Scholar 

  12. Amati, L., Frontera, F., Guidorzi, C.: Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations. Astron. Astrophys. 508, 173 (2009)

    Article  ADS  Google Scholar 

  13. Amati, L., Frontera, F., Tavani, M., et al.: Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts. Astron. Astrophys. 390, 81 (2002)

    Article  ADS  Google Scholar 

  14. Amati, L., Guidorzi, C., Frontera, F., et al.: Measuring the cosmological parameters with the Ep, i-Eiso correlation of Gamma-Ray bursts. MNRAS 391, 577 (2008)

    Article  ADS  Google Scholar 

  15. Amendola, L.: Coupled quintessence. Phys. Rev. D 62, 043511 (2000)

    Article  ADS  Google Scholar 

  16. Amendola, L., Eggers Bjæ lde, O., Valkenburg, W., Wong, Y.Y.Y.: How real-time cosmology can distinguish between different anisotropic models. J. Cosmol. Astropart. Phys. 12, 042 (2013)

    Article  ADS  Google Scholar 

  17. Anderson, R.I., Riess, A.G.: On Cepheid distance scale bias due to stellar companions and cluster populations. (2017). arXiv:1712.01065

  18. Andres Vallejo, S., Enea Romano, A.: Reconstructing the metric of the local universe from number counts observations. J. Cosmol. Astropart. Phys. 10, 023 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  20. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Essentials of k-essence. Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  21. Ata, M., Baumgarten, F., Bautista, J., et al.: The clustering of the SDSS-IV extended baryon oscillation spectroscopic survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. MNRAS 473, 4773 (2017)

    Article  ADS  Google Scholar 

  22. Aubourg, É., Bailey, S., Bautista, J.E., et al.: Cosmological implications of baryon acoustic oscillation measurements. Phys. Rev. D 92, 123516 (2015)

    Article  ADS  Google Scholar 

  23. Bagla, J.S., Jassal, H.K., Padmanabhan, T.: Cosmology with tachyon field as dark energy. Phys. Rev. D 67, 063504 (2003)

    Article  ADS  Google Scholar 

  24. Bahamonde, S., Boehmer, C.G., Carloni, S., et al.: Dynamical systems applied to cosmology: dark energy and modified gravity. (2017) arXiv:1712.03107

  25. Bahcall, N.A., Cen, R.: Galaxy clusters and cold dark matter—a low-density unbiased universe? Astrophys. J. 398, L81 (1992)

    Article  ADS  Google Scholar 

  26. Bardeen, J.M., Bond, J.R., Efstathiou, G.: Cosmic fluctuation spectra with large-scale power. Astrophys. J. 321, 28 (1987)

    Article  ADS  Google Scholar 

  27. Bautista, J.E., Busca, N.G., Guy, J., et al.: Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Ly\(\alpha \)-forests. Astron. Astrophys. 603, A12 (2017)

    Article  Google Scholar 

  28. Beaton, R.L., Freedman, W.L., Madore, B.F., et al.: The Carnegie-Chicago hubble program. I. An independent approach to the extragalactic distance scale using only population II distance indicators. Astron. Astrophys. 832, 210 (2016)

    Google Scholar 

  29. Bernal, J.L., Verde, L., Riess, A.G.: The trouble with H\(_{0}\). J. Cosmol. Astropart. Phys. 10, 019 (2016)

    Article  ADS  Google Scholar 

  30. Bessel, F.W.: Über Veränderlichkeit der eigenen Bewegungen der Fixterne Von Herrn Geh-Rath Bessel. Astron. Nachr. 22, 145 (1844)

    Article  ADS  Google Scholar 

  31. Betoule, M., Kessler, R., Guy, J., et al.: Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  32. Bilicki, M., Seikel, M.: We do not live in the R\(_{h}\) = ct universe. MNRAS 425, 1664 (2012)

    Article  ADS  Google Scholar 

  33. Blondin, S., Mandel, K.S., Kirshner, R.P.: Do spectra improve distance measurements of Type Ia supernovae? Astron. Astrophys. 526, A81 (2011)

    Article  ADS  Google Scholar 

  34. Böhringer, H., Chon, G., Bristow, M., Collins, C .A.: The extended ROSAT-ESO flux-limited X-ray galaxy cluster survey (REFLEX II). V. Exploring a local underdensity in the southern sky. Astron. Astrophys. 574, A26 (2015)

    Article  ADS  Google Scholar 

  35. Bonamente, M., Joy, M.K., LaRoque, S.J., et al.: Determination of the cosmic distance scale from Sunyaev-Zel’dovich effect and Chandra X-ray measurements of high-redshift galaxy clusters. Astrophys. J. 647, 25 (2006)

    Article  ADS  Google Scholar 

  36. Bondi, H.: Spherically symmetrical models in general relativity. MNRAS 107, 410 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bono, G., Stetson, P.B., VandenBerg, D.A., et al.: On a new near-infrared method to estimate the absolute ages of star clusters: NGC 3201 as a first test case. Astrophys. J. 708, L74 (2010)

    Article  ADS  Google Scholar 

  38. Bonvin, V., Courbin, F., Suyu, S.H., et al.: H0LiCOW - V. New COSMOGRAIL time delays of HE 0435–1223: H\(_{0}\) to 3.8 per cent precision from strong lensing in a flat \(\varLambda \)CDM model. MNRAS 465, 4914 (2017)

    Article  ADS  Google Scholar 

  39. Bourdin, H., Mazzotta, P., Kozmanyan, A., Jones, C., Vikhlinin, A.: Pressure profiles of distant galaxy clusters in the Planck catalogue. Astrophys. J. 843, 72 (2017)

    Article  ADS  Google Scholar 

  40. Bronder, T.J., Hook, I.M., Astier, P., et al.: SNLS spectroscopy: testing for evolution in type Ia supernovae. Astron. Astrophys. 477, 717 (2008)

    Article  ADS  Google Scholar 

  41. Bull, P., Clifton, T., Ferreira, P.G.: Kinematic Sunyaev-Zel’dovich effect as a test of general radial inhomogeneity in Lemaître-Tolman-Bondi cosmology. Phys. Rev. D 85, 024002 (2012)

    Article  ADS  Google Scholar 

  42. Cai, R.-G., Wang, A.: Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. J. Cosmol. Astropart. Phys. 3, 002 (2005)

    Article  ADS  Google Scholar 

  43. Caldwell, R.R.: A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  44. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  MATH  Google Scholar 

  45. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy: dark energy with w\(<\)-1 causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  46. Carroll, S.M., Hoffman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than -1? Phys. Rev. D 68, 023509 (2003)

    Article  ADS  Google Scholar 

  47. Célérier, M.-N.: Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353, 63 (2000)

    ADS  Google Scholar 

  48. Chen, Y., Kumar, S., Ratra, B.: Determining the hubble constant from hubble parameter measurements. Astrophys. J. 835, 86 (2017)

    Article  ADS  Google Scholar 

  49. Cheng, C., Huang, Q.: An accurate determination of the Hubble constant from baryon acoustic oscillation datasets. Sci. China Phys. Mech. Astron. 58, 095684 (2015)

    ADS  Google Scholar 

  50. Chevallier, M., Polarski, D.: Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 10, 213 (2001)

    Article  ADS  Google Scholar 

  51. Chiba, T., Okabe, T., Yamaguchi, M.: Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  52. Clarkson, C.: Establishing homogeneity of the universe in the shadow of dark energy. C.R. Phys. 13, 682 (2012)

    Article  ADS  Google Scholar 

  53. Clarkson, C., Clifton, T., February, S.: Perturbation theory in Lemaître-Tolman-Bondi cosmology. J. Cosmol. Astropart. Phys. 6, 25 (2009)

    Article  ADS  Google Scholar 

  54. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  55. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Conley, A., Guy, J., Sullivan, M., et al.: Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astrophys. J. Suppl. Ser. 192, 1 (2011)

    Article  ADS  Google Scholar 

  57. Copeland, E.J., Garousi, M.R., Sami, M., Tsujikawa, S.: What is needed of a tachyon if it is to be the dark energy? Phys. Rev. D 71, 043003 (2005)

    Article  ADS  Google Scholar 

  58. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Coulter, D.A., Foley, R.J., Kilpatrick, C.D., et al.: Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017)

    Article  ADS  Google Scholar 

  60. Dai, M., Wang, Y.: Sampling the probability distribution of type Ia supernova lightcurve parameters in cosmological analysis. MNRAS 459, 1819 (2016)

    Article  ADS  Google Scholar 

  61. de Grijs, R., Wicker, J.E., Bono, G.: Clustering of local group distances: publication bias or correlated measurements? I the large magellanic cloud. Astron. J. 147, 122 (2014)

    Article  ADS  Google Scholar 

  62. Delabrouille, J., de Bernardis, P., Bouchet, F.R., et al.: Exploring cosmic origins with CORE: survey requirements and mission design. (2017). arXiv:1706.04516

  63. Delubac, T., Bautista, J.E., Busca, N.G., et al.: Baryon acoustic oscillations in the Ly\(\alpha \) forest of BOSS DR11 quasars. Astron. Astrophys. 574, A59 (2015)

    Article  Google Scholar 

  64. Deng, X.-M.: A modified generalized chaplygin gas as the unified dark matter-dark energy revisited. Braz. J. Phys. 41, 333 (2011)

    Article  ADS  Google Scholar 

  65. Deser, S.: Introduction to Jebsen’s paper. Gen. Rel. Grav. 37, 2251 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. DESI Collaboration; Aghamousa, A., Aguilar, J., et al.: The DESI experiment part I: science, targeting, and survey design. (2016). arXiv:1611.00036

  67. Dev, A., Jain, D., Lohiya, D.: Power law cosmology—a viable alternative. (2008). arXiv:0804.3491

  68. Dev, A., Safonova, M., Jain, D., Lohiya, D.: Cosmological tests for a linear coasting cosmology. Phys. Lett. B 548, 12 (2002)

    Article  ADS  MATH  Google Scholar 

  69. Dhawan, S., Jha, S.W., Leibundgut, B.: Measuring the hubble constant with type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 609, A72 (2018)

    Article  ADS  Google Scholar 

  70. Di Valentino, E., Melchiorri, A., Silk, J.: Reconciling Planck with the local value of H\(_{0}\) in extended parameter space. Phys. Lett. B 761, 242 (2016)

    Article  ADS  Google Scholar 

  71. Ding, X., Biesiada, M., Cao, S., Li, Z., Zhu, Z.-H.: Is there evidence for dark energy evolution? Astrophys. J. 803, L22 (2015)

    Article  ADS  Google Scholar 

  72. Dolgov, A., Halenka, V., Tkachev, I.: Power-law cosmology, SN Ia, and BAO. J. Cosmol. Astropart. Phys. 10, 047 (2014)

    Article  ADS  Google Scholar 

  73. Dolgov, A.D.: Higher spin fields and the problem of the cosmological constant. Phys. Rev. D 55, 5881 (1997)

    Article  ADS  Google Scholar 

  74. Doran, M., Schwindt, J.-M., Wetterich, C.: Structure formation and the time dependence of quintessence. Phys. Rev. D 64, 123520 (2001)

    Article  ADS  Google Scholar 

  75. du Mas des Bourboux, H., Le Goff, J.-M., Blomqvist, M., et al.: Baryon acoustic oscillations from the complete SDSS-III Ly\(\alpha \)-quasar cross-correlation function at z = 2.4. Astron. Astrophys. 608, A130 (2017)

    Article  Google Scholar 

  76. Efstathiou, G.: H\(_{0}\) revisited. MNRAS 440, 1138 (2014)

    Article  ADS  Google Scholar 

  77. Efstathiou, G., Sutherland, W.J., Maddox, S.J.: The cosmological constant and cold dark matter. Nature 348, 705 (1990)

    Article  ADS  Google Scholar 

  78. Einstein, A.: Die Feldgleichungen der Gravitation, pp. 844–847. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin (1915)

    MATH  Google Scholar 

  79. Einstein, A.: Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie, pp. 142–152. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin (1917)

    MATH  Google Scholar 

  80. Eisenstein, D.J., Hu, W.: Baryonic features in the matter transfer function. Astrophys. J. 496, 605 (1998)

    Article  ADS  Google Scholar 

  81. Eisenstein, D.J., Zehavi, I., Hogg, D.W., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  82. Ellis, G.F.R.: On the definition of distance in general relativity: I. M. H. Etherington (Philosophical Magazine ser. 7, vol. 15, 761 (1933)). Gen. Relativ. Gravit. 39, 1047 (2007)

    Article  ADS  MATH  Google Scholar 

  83. Enea Romano, A.: Hubble trouble or Hubble bubble? (2016). arXiv:1609.04081

  84. Enqvist, K., Mattsson, T.: The effect of inhomogeneous expansion on the supernova observations. J. Cosmol. Astropart. Phys. 2, 19 (2007)

    Article  ADS  Google Scholar 

  85. February, S., Larena, J., Smith, M., Clarkson, C.: Rendering dark energy void. MNRAS 405, 2231 (2010)

    ADS  Google Scholar 

  86. Feeney, S.M., Mortlock, D.J., Dalmasso, N.: Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder. (2017). arXiv:1707.00007

  87. Feng, C.-J., Shen, X.-Y., Li, P., Li, X.-Z.: A new class of parametrization for dark energy without divergence. J. Cosmol. Astropart. Phys. 9, 023 (2012)

    Article  ADS  Google Scholar 

  88. Fernández Arenas, D., Terlevich, E., Terlevich, R., et al.: An independent determination of the local Hubble constant. MNRAS 474, 1250 (2018)

    Article  ADS  Google Scholar 

  89. Filippenko, A.V.: Type Ia supernovae and cosmology. In: Sion, E.M., Vennes, S., Shipman, H.I. (eds.) White Dwarfs: Cosmological and Galactic Probes. Astrophysics and Space Science Library, pp. 97–133. Springer, New York (2005)

    Chapter  Google Scholar 

  90. Follin, B., Knox, L.: Insensitivity of the distance ladder hubble constant determination to Cepheid calibration modeling choices. (2017). arXiv:1707.01175

  91. Font-Ribera, A., McDonald, P., Mostek, N., et al.: DESI and other dark energy experiments in the era of neutrino mass measurements. J. Cosmol. Astropart. Phys. 5, 023 (2014)

    Article  ADS  Google Scholar 

  92. Freedman, W.L.: Correction: cosmology at a crossroads. Nat. Astron. 1, 0169 (2017)

    Article  ADS  Google Scholar 

  93. Freedman, W.L., Madore, B.F.: The hubble constant. Ann. Rev. Astron. Astrophys. 48, 673 (2010)

    Article  ADS  Google Scholar 

  94. Freedman, W.L., Madore, B.F., Gibson, B.K., et al.: Final results from the hubble space telescope key project to measure the hubble constant. Astrophys. J. 553, 47 (2001)

    Article  ADS  Google Scholar 

  95. Freedman, W.L., Madore, B.F., Scowcroft, V., et al.: Carnegie hubble program: a mid-infrared calibration of the hubble constant. Astrophys. J. 758, 24 (2012)

    Article  ADS  Google Scholar 

  96. Friedmann, A.: Über die Krümmung des Raumes. Z. Angew. Phys. 10, 377 (1922)

    MATH  Google Scholar 

  97. Friedmann, A.: Über die Möglichkeit einer welt mit konstanter negativer Krümmung des Raumes. Z. Angew. Phys. 21, 326 (1924)

    MathSciNet  MATH  Google Scholar 

  98. Collaboration, Gaia, Prusti, T., de Bruijne, J.H.J., et al.: The Gaia mission. Astron. Astrophys. 595, A1 (2016)

    Article  Google Scholar 

  99. Gao, F., Braatz, J.A., Reid, M.J., et al.: The megamaser cosmology project. IX. Black hole masses for three maser galaxies, the megamaser cosmology project. Astrophys. J. 834, 52 (2017)

    Article  ADS  Google Scholar 

  100. Garcia-Bellido, J., Haugbølle, T.: Confronting Lemaitre Tolman Bondi models with observational cosmology. J. Cosmol. Astropart. Phys. 4, 3 (2008)

    Article  ADS  Google Scholar 

  101. Gaztañaga, E., Cabré, A., Hui, L.: Clustering of luminous red galaxies—IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). MNRAS 399, 1663 (2009)

    Article  ADS  Google Scholar 

  102. Gehlaut, S., Kumar, P., Geetanjali, Lohiya, D.: A concordant “freely coasting cosmology”. (2003). arXiv:astro-ph/0306448

  103. Goldhaber, G., Groom, D.E., Kim, A., et al.: Timescale stretch parameterization of type Ia supernova B-band light curves. Astrophys. J. 558, 359 (2001)

    Article  ADS  Google Scholar 

  104. Goldstein, A., Veres, P., Burns, E., et al.: An ordinary short gamma-ray burst with extraordinary implications: fermi-GBM detection of GRB 170817A. Astrophys. J. 848, L14 (2017)

    Article  ADS  Google Scholar 

  105. Goobar, A.: Low R\(_{V}\) from circumstellar dust around supernovae. Astrophys. J. 686, L103 (2008)

    Article  ADS  Google Scholar 

  106. Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  MATH  Google Scholar 

  107. Guy, J., Astier, P., Baumont, S., et al.: SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11 (2007)

    Article  ADS  Google Scholar 

  108. Guy, J., Astier, P., Nobili, S., Regnault, N., Pain, R.: SALT: a spectral adaptive light curve template for type Ia supernovae. Astron. Astrophys. 443, 781 (2005)

    Article  ADS  Google Scholar 

  109. Haridasu, B.S., Luković, V.V., D’Agostino, R., Vittorio, N.: Strong evidence for an accelerating universe. Astron. Astrophys. 600, L1 (2017a)

    Article  ADS  Google Scholar 

  110. Haridasu, B.S., Luković, V.V., Vittorio, N.: Isotropic vs. anisotropic components of BAO data: a tool for model selection. (2017b). arXiv:1711.03929

  111. Harvey, A.: How Einstein discovered dark energy. (2012). arXiv:1211.6338

  112. Hayden, B.T., Gupta, R.R., Garnavich, P.M., et al.: The fundamental metallicity relation reduces type Ia SN hubble residuals more than host mass alone. Astrophys. J. 764, 191 (2013)

    Article  ADS  Google Scholar 

  113. Hicken, M., Wood-Vasey, W.M., Blondin, S., et al.: Improved dark energy constraints from \(\sim \)100 new CfA supernova type Ia light curves. Astrophys. J. 700, 1097 (2009)

    Article  ADS  Google Scholar 

  114. Hillebrandt, W., Niemeyer, J.C.: Type IA supernova explosion models. Ann. Rev. Astron. Astrophys. 38, 191 (2000)

    Article  ADS  Google Scholar 

  115. Hinshaw, G., Larson, D., Komatsu, E.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013)

    Article  ADS  Google Scholar 

  116. Hinton, S.R., Kim, A., Davis, T.M.: Accounting for sample selection in Bayesian analyses. (2017). arXiv:1706.03856

  117. Holwerda, B.W., Reynolds, A., Smith, M., Kraan-Korteweg, R.C.: SN Ia host galaxy properties and the dust extinction distribution. MNRAS 446, 3768 (2015)

    Article  ADS  Google Scholar 

  118. Hoscheit, B.L., Barger, A.J.: Large local void, supernovae type Ia, and the kinematic Sunyaev-Zel’dovich effect in a lambda-LTB model. In: American Astronomical Society Meeting Abstracts, Vol. 230 (2017)

  119. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168 (1929)

    Article  ADS  MATH  Google Scholar 

  120. Huchra, J.P.: The hubble constant. Science 256, 321 (1992)

    Article  ADS  Google Scholar 

  121. Jackson, N.: The hubble constant. Living Rev. Relat. 10, 4 (2007)

    Article  ADS  MATH  Google Scholar 

  122. Jang, I.S., Lee, M.G.: The tip of the red giant branch distances to typa Ia supernova host galaxies. V. NGC 3021, NGC 3370, and NGC 1309 and the value of the hubble constant. Astrophys. J. 836, 74 (2017)

    Article  ADS  Google Scholar 

  123. Jassal, H.K., Bagla, J.S., Padmanabhan, T.: WMAP constraints on low redshift evolution of dark energy. MNRAS 356, L11 (2005)

    Article  ADS  Google Scholar 

  124. Jimenez, R., Loeb, A.: Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 573, 37 (2002)

    Article  ADS  Google Scholar 

  125. Johansson, J., Thomas, D., Pforr, J., et al.: SN Ia host galaxy properties from Sloan digital sky survey-II spectroscopy. MNRAS 435, 1680 (2013)

    Article  ADS  Google Scholar 

  126. John, M.V., Joseph, K.B.: Generalized Chen-Wu type cosmological model. Phys. Rev. D 61, 087304 (2000)

    Article  ADS  Google Scholar 

  127. Jones, D.O., Scolnic, D.M., Riess, A.G., et al.: Measuring dark energy properties with photometrically classified pan-STARRS supernovae. II. Cosmological parameters. (2017). arXiv:1710.00846

  128. Joudaki, S., Mead, A., Blake, C., et al.: KiDS-450: testing extensions to the standard cosmological model. MNRAS 471, 1259 (2017)

    Article  ADS  Google Scholar 

  129. Joyce, A., Jain, B., Khoury, J., Trodden, M.: Beyond the cosmological standard model. Phys. Rep. 568, 1 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  130. Joyce, A., Lombriser, L., Schmidt, F.: Dark energy versus modified gravity. Annu. Rev. Nucl. Part. Sci. 66, 95 (2016)

    Article  ADS  Google Scholar 

  131. Kamenshchik, A., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  132. Kasen, D.: Secondary maximum in the near-infrared light curves of type Ia supernovae. Astrophys. J. 649, 939 (2006)

    Article  ADS  Google Scholar 

  133. Kattner, S., Leonard, D.C., Burns, C.R., et al.: The standardizability of type Ia supernovae in the near-infrared: evidence for a peak-luminosity versus decline-rate relation in the near-infrared. Publ. Astron. Soc. Pac. 124, 114 (2012)

    Article  ADS  Google Scholar 

  134. Keenan, R.C., Barger, A.J., Cowie, L.L.: Evidence for a \(\sim \)300 megaparsec scale under-density in the local galaxy distribution. Astrophys. J. 775, 62 (2013)

    Article  ADS  Google Scholar 

  135. Kelly, P.L., Hicken, M., Burke, D.L., Mandel, K.S., Kirshner, R.P.: Hubble residuals of nearby type Ia supernovae are correlated with host galaxy masses. Astrophys. J. 715, 743 (2010)

    Article  ADS  Google Scholar 

  136. Kessler, R., Becker, A.C., Cinabro, D., et al.: First-year sloan digital sky survey-II supernova results: hubble diagram and cosmological parameters. Astrophys. J. Suppl. Ser. 185, 32 (2009)

    Article  ADS  Google Scholar 

  137. Kessler, R., Scolnic, D.: Correcting type Ia supernova distances for selection biases and contamination in photometrically identified samples. Astrophys. J. 836, 56 (2017)

    Article  ADS  Google Scholar 

  138. Kim, A.G.: Type Ia supernova intrinsic magnitude dispersion and the fitting of cosmological parameters. Publ. Astron. Soc. Pac. 123, 230 (2011)

    Article  ADS  Google Scholar 

  139. Kim, A.G., Aldering, G., Antilogus, P., et al.: Type Ia supernova hubble residuals and host-galaxy properties. Astrophys. J. 784, 51 (2014)

    Article  ADS  Google Scholar 

  140. Kirshner, R.P.: Hubble’s diagram and cosmic expansion. Proc. Natl. Acad. Sci. 101, 8 (2003)

    Article  ADS  Google Scholar 

  141. Komatsu, E., Dunkley, J., Nolta, M.R., et al.: Five-year wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  142. Komatsu, E., Smith, K.M., Dunkley, J., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  143. Kowalski, M., Rubin, D., Aldering, G., et al.: Improved cosmological constraints from new, old, and combined supernova data sets. Astrophys. J. 686, 749 (2008)

    Article  ADS  Google Scholar 

  144. Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  145. Kristian, J., Sachs, R.K.: Observations in cosmology. Astrophys. J. 143, 379 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  146. Kuo, C.Y., Braatz, J.A., Lo, K.Y., et al.: The megamaser cosmology project. VI. Observations of NGC 6323. Astrophys. J. 800, 26 (2015)

    Article  ADS  Google Scholar 

  147. Kuo, C.Y., Braatz, J.A., Reid, M.J., et al.: The megamaser cosmology project. V. An angular-diameter distance to NGC 6264 at 140 Mpc. Astrophys. J. 767, 155 (2013)

    Article  ADS  Google Scholar 

  148. Laureijs, R., Amiaux, J., Arduini, S., et al.: Euclid definition study report. (2011). arXiv:1110.3193

  149. Leavitt, H.S.: 1777 variables in the Magellanic clouds. Ann. Harv. Coll. Observ. 60, 87 (1908)

    ADS  Google Scholar 

  150. Lemaître, G.: Un univers homogène de masse constant et de rayon croissant, rendant compte de la vitesse radiale des nébeleuses extra-galactiques. Ann. Soc. Sci. Brux 47, 49 (1927)

    MATH  Google Scholar 

  151. Lemaître, G.: L’Univers en expansion. Ann. Soc. Sci. Brux. 53, 51 (1933)

    MATH  Google Scholar 

  152. Lewis, G.F., Barnes, L.A., Kaushik, R.: Primordial nucleosynthesis in the R\(_{h}\) = ct cosmology: pouring cold water on the simmering Universe. MNRAS 460, 291 (2016)

    Article  ADS  Google Scholar 

  153. Li, M., Li, N., Wang, S., Lanjun, Z.: More evidence for the redshift dependence of color from the JLA supernova sample using redshift tomography. MNRAS 460, 2586–2592 (2016)

    Article  ADS  Google Scholar 

  154. Li, M., Li, X.-D., Wang, S., Wang, Y.: Dark energy. Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  MATH  Google Scholar 

  155. Liao, K., Fan, X.-L., Ding, X., Biesiada, M., Zhu, Z.-H.: Precision cosmology from future lensed gravitational wave and electromagnetic signals. Nat. Commun. 8, 1148 (2017)

    Article  ADS  Google Scholar 

  156. Lin, W., Ishak, M.: Cosmological discordances: a new measure, marginalization effects, and application to geometry versus growth current data sets. Phys. Rev. D 96, 023532 (2017)

    Article  ADS  Google Scholar 

  157. Linder, E.V.: Exploring the expansion history of the universe. Phys. Rev. Lett. 90, 091301 (2003)

    Article  ADS  Google Scholar 

  158. Linder, E.V., Huterer, D.: How many dark energy parameters? Phys. Rev. D 72, 043509 (2005)

    Article  ADS  Google Scholar 

  159. Linder, E.V., Jenkins, A.: Cosmic structure growth and dark energy. Mon. Not. R. Astron. Soc. 346, 573 (2003)

    Article  ADS  Google Scholar 

  160. Lonappan, A.I., Kumar, S., Ruchika, Dinda, B.R., Sen, A.A.: Bayesian evidences for dark energy models in light of current observational data. (2017). arXiv:1707.00603

  161. Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  162. Lovelock, D.: The four-dimensionality of space and the Einstein tensor. J. Math. Phys. 13, 874 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. Luković, V., Cabella, P., Vittorio, N.: Dark matter in cosmology. Int. J. Mod. Phys. A 29, 1443001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  164. Luković, V.V., D’Agostino, R., Vittorio, N.: Is there a concordance value for H\(_{0}\)? Astron. Astrophys. 595, A109 (2016)

    Article  ADS  Google Scholar 

  165. Maartens, R.: Is the universe homogeneous? Philos. Trans. R. Soc. Lond. Ser. A 369, 5115 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  166. Malmquist, K.G.: On some relations in stellar statistics. Medd. Fran Lunds Astron. Observ. Ser. I 100, 1 (1922)

    ADS  MATH  Google Scholar 

  167. March, M.C., Trotta, R., Berkes, P., Starkman, G.D., Vaudrevange, P.M.: Improved constraints on cosmological parameters from type Ia supernova data. MNRAS 418, 2308 (2011)

    Article  ADS  Google Scholar 

  168. Marra, V., Amendola, L., Sawicki, I., Valkenburg, W.: Cosmic variance and the measurement of the local hubble parameter. Phys. Rev. Lett. 110, 241305 (2013)

    Article  ADS  Google Scholar 

  169. Marriner, J., Bernstein, J.P., Kessler, R., et al.: A more general model for the intrinsic scatter in type Ia supernova distance moduli. Astrophys. J. 740, 72 (2011)

    Article  ADS  Google Scholar 

  170. McCrea, W.H.: The cosmical constant. Q. J. R. Astron. Soc. 12, 140 (1971)

    ADS  Google Scholar 

  171. Melia, F.: On recent claims concerning the R\(_{h}\) = ct universe. MNRAS 446, 1191 (2015)

    Article  ADS  Google Scholar 

  172. Melia, F.: The linear growth of structure in the R\(_{h}\) = ct universe. MNRAS 464, 1966 (2017)

    Article  ADS  Google Scholar 

  173. Melia, F., Shevchuk, A.S.H.: The R\(_{h}\)=ct universe. MNRAS 419, 2579 (2012)

    Article  ADS  Google Scholar 

  174. Milne, E.A.: Relativity, Gravitation and World-Structure. Oxford University Press, Oxford (1935)

    MATH  Google Scholar 

  175. Mitra, A.: Why the big bang model does not allow inflationary and cyclic cosmologies though mathematically one can obtain any model with favourable assumptions. New A 30, 46 (2014)

    Article  ADS  Google Scholar 

  176. Moffat, J.W.: Inhomogeneous cosmology Redux. (2016). arXiv:1608.00534

  177. Monelli, M., Testa, V., Bono, G., et al.: The absolute age of the globular cluster M15 using near-infrared adaptive optics images from PISCES/LBT. Astrophys. J. 812, 25 (2015)

    Article  ADS  Google Scholar 

  178. Moreno-Raya, M.E., Mollá, M., López-Sánchez, Á.R., et al.: On the dependence of type Ia SNe luminosities on the metallicity of their host galaxies. Astrophys. J. 818, L19 (2016)

    Article  ADS  Google Scholar 

  179. Moresco, M.: Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z \(\sim \) 2. MNRAS 450, L16 (2015)

    Article  ADS  Google Scholar 

  180. Moresco, M., Cimatti, A., Jimenez, R., et al.: Improved constraints on the expansion rate of the universe up to z \(\sim \) 1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 8, 006 (2012)

    Article  ADS  Google Scholar 

  181. Moresco, M., Pozzetti, L., Cimatti, A., et al.: A 6% measurement of the Hubble parameter at \(z\sim 0.45\): direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys 2016, 014 (2016)

    Article  Google Scholar 

  182. Mukherjee, P., Parkinson, D., Corasaniti, P.S., Liddle, A.R., Kunz, M.: Model selection as a science driver for dark energy surveys. MNRAS 369, 1725 (2006)

    Article  ADS  Google Scholar 

  183. Nadathur, S., Sarkar, S.: Reconciling the local void with the CMB. Phys. Rev. D 83, 063506 (2011)

    Article  ADS  Google Scholar 

  184. Nielsen, J.T., Guffanti, A., Sarkar, S.: Marginal evidence for cosmic acceleration from type Ia supernovae. Sci. Rep. 6, 35596 (2016)

    Article  ADS  Google Scholar 

  185. Nobili, S., Goobar, A.: The colour-lightcurve shape relation of type Ia supernovae and the reddening law. Astron. Astrophys. 487, 19 (2008)

    Article  ADS  Google Scholar 

  186. Ooba, J., Ratra, B., Sugiyama, N.: Planck 2015 constraints on the non-flat \(\phi \)CDM inflation model. (2017). arXiv:1712.08617

  187. O’Raifeartaigh, C., O’Keeffe, M., Nahm, W., Mitton, S.: One hundred years of the cosmological constant: from ’superfluous stunt’ to dark energy. (2017). arXiv:1711.06890

  188. Padmanabhan, T., Choudhury, T.R.: Can the clustered dark matter and the smooth dark energy arise from the same scalar field? Phys. Rev. D 66, 081301 (2002)

    Article  ADS  Google Scholar 

  189. Park, C.-G., Ratra, B.: Using the tilted flat-\(\varLambda \)CDM and the non-flat \(\varLambda \)CDM inflation models to measure cosmological parameters from a compilation of observational data. (2018). arXiv:1801.00213

  190. Peebles, P.J.E., Ratra, B.: Cosmology with a time variable cosmological constant. Astrophys. J. 325, L17 (1988)

    Article  ADS  Google Scholar 

  191. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Measurements of \(\varOmega \) and \(\varLambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  MATH  Google Scholar 

  192. Phillips, M.M.: The absolute magnitudes of type IA supernovae. Astrophys. J. 413, L105 (1993)

    Article  ADS  Google Scholar 

  193. Planck Collaboration; Ade, P.A.R., Aghanim, N., et al.: Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

  194. Planck Collaboration; Ade, P.A.R., Aghanim, N., et al.: Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys. 594, A27 (2016a)

  195. Planck Collaboration; Ade, P.A.R., Aghanim, N., et al.: Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources. Astron. Astrophys. 594, A13 (2016b)

  196. Planck Collaboration; Aghanim, N., Ashdown, M., et al.: Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. Astron. Astrophys. 596, A107 (2016c)

  197. Pourhassan, B., Kahya, E.O.: FRW cosmology with the extended Chaplygin gas. Adv. High Energy. (2014). arXiv:1405.0667

  198. Pskovskii, I.P.: Light curves, color curves, and expansion velocity of type I supernovae as functions of the rate of brightness decline. Sov. Ast. 21, 675 (1977)

    ADS  Google Scholar 

  199. Pun, C.S.J., Gergely, L., Mak, M.K., et al.: Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models. Phys. Rev. D 77, 063528 (2008)

    Article  ADS  Google Scholar 

  200. Rani, S., Altaibayeva, A., Shahalam, M., Singh, J.K., Myrzakulov, R.: Constraints on cosmological parameters in power-law cosmology. J. Cosmol. Astropart. Phys. 3, 031 (2015)

    Article  ADS  Google Scholar 

  201. Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  202. Ratsimbazafy, A.L., Loubser, S.I., Crawford, S.M., et al.: Age-dating luminous red galaxies observed with the Southern African large telescope. MNRAS 467, 3239 (2017)

    Article  ADS  Google Scholar 

  203. Reid, M.J., Braatz, J.A., Condon, J.J., et al.: The megamaser cosmology project. I. Very long baseline interferometric observations of UGC 3789. Astrophys. J. 695, 287 (2009)

    Article  ADS  Google Scholar 

  204. Reid, M.J., Braatz, J.A., Condon, J .J., et al.: The Megamaser cosmology project. IV. A direct measurement of the hubble constant from UGC 3789. Astrophys. J. 767, 154 (2013)

    Article  ADS  Google Scholar 

  205. Richardson, D., Jenkins III, R.L., Wright, J., Maddox, L.: Absolute-magnitude distributions of supernovae. Astron. J. 147, 118 (2014)

    Article  ADS  Google Scholar 

  206. Riess, A.G., Casertano, S., Yuan, W., et al.: New parallaxes of galactic Cepheids from spatially scanning the hubble space telescope: implications for the hubble constant. (2018). arXiv:1801.01120

  207. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  208. Riess, A.G., Li, W., Stetson, P.B., et al.: Cepheid calibrations from the hubble space telescope of the luminosity of two recent type Ia supernovae and a redetermination of the hubble constant. Astrophys. J. 627, 579 (2005)

    Article  ADS  Google Scholar 

  209. Riess, A.G., Macri, L., Casertano, S., et al.: A 3% solution: determination of the hubble constant with the hubble space telescope and wide field camera 3. Astrophys. J. 730, 119 (2011)

    Article  ADS  Google Scholar 

  210. Riess, A.G., Macri, L., Casertano, S., et al.: A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. Astrophys. J. 699, 539 (2009)

    Article  ADS  Google Scholar 

  211. Riess, A .G., Macri, L .M., Hoffmann, S .L., et al.: A 2.4% determination of the local value of the hubble constant. Astrophys. J. 826, 56 (2016)

    Article  ADS  Google Scholar 

  212. Robertson, H.P.: Kinematics and world-structure. Astrophys. J. 82, 284 (1935)

    Article  ADS  MATH  Google Scholar 

  213. Rowan-Robinson, M.: The Cosmological Distance Ladder: Distance and Time in the Universe. W.H. Freeman, New York (1985)

    Google Scholar 

  214. Rubin, D., Aldering, G., Barbary, K., et al.: UNITY: confronting supernova cosmology’s statistical and systematic uncertainties in a unified Bayesian framework. Astrophys. J. 813, 137 (2015)

    Article  ADS  Google Scholar 

  215. Rubin, D., Hayden, B.: Is the expansion of the universe accelerating? All signs point to yes. Astrophys. J. 833, L30 (2016)

    Article  ADS  Google Scholar 

  216. Saha, A., Thim, F., Tammann, G.A., Reindl, B., Sandage, A.: Cepheid distances to SNe Ia host galaxies based on a revised photometric zero point of the HST WFPC2 and new PL relations and metallicity corrections. Astrophys. J. Suppl. Ser. 165, 108 (2006)

    Article  ADS  Google Scholar 

  217. Sahni, V., Shafieloo, A., Starobinsky, A.A.: Model-independent evidence for dark energy evolution from Baryon acoustic oscillations. Astrophys. J. 793, L40 (2014)

    Article  ADS  Google Scholar 

  218. Sandage, A., Tammann, G.A., Saha, A., et al.: The hubble constant: a summary of the hubble space telescope program for the luminosity calibration of type Ia supernovae by means of cepheids. Astrophys. J. 653, 843 (2006)

    Article  ADS  Google Scholar 

  219. Sarkar, S.: Is the evidence for dark energy secure? Gen. Rel. Grav. 40, 269 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  220. Savchenko, V., Ferrigno, C., Kuulkers, E., et al.: INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys. J. 848, L15 (2017)

    Article  ADS  Google Scholar 

  221. Schrödinger, E.: Über ein Lösungssystem der allgemein kovarianten. Phys. Z. 19, 20–22 (1918)

    MATH  Google Scholar 

  222. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6, 461 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  223. Scolnic, D.M., Jones, D.O., Rest, A., et al.: The complete light-curve sample of spectroscopically confirmed type Ia supernovae from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. (2017). arXiv:1710.00845

  224. Shafer, D.L.: Robust model comparison disfavors power law cosmology. Phys. Rev. D 91, 103516 (2015)

    Article  ADS  Google Scholar 

  225. Shafieloo, A.: Crossing statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem. J. Cosmol. Astropart. Phys. 5, 024 (2012)

    Article  ADS  Google Scholar 

  226. Shariff, H., Jiao, X., Trotta, R., van Dyk, D.A.: BAHAMAS: new analysis of type Ia supernovae reveals inconsistencies with standard cosmology. Astrophys. J. 827, 1 (2016)

    Article  ADS  Google Scholar 

  227. Sievers, J.L., Hlozek, R.A., Nolta, M.R., et al.: The Atacama cosmology telescope: cosmological parameters from three seasons of data. J. Cosmol. Astropart. Phys. 10, 060 (2013)

    Article  ADS  Google Scholar 

  228. Simon, J., Verde, L., Jimenez, R.: Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  229. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  MATH  Google Scholar 

  230. Spergel, D.N., Bean, R., Doré, O., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  231. Spergel, D.N., Verde, L., Peiris, H.V., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  232. Steinhardt, P .J., Wang, L.: Cosmological tracking solutions. Phys. Rev. D 59, 123504 (1999)

    Article  ADS  Google Scholar 

  233. Stern, D., Jimenez, R., Verde, L., Stanford, S.A., Kamionkowski, M.: Cosmic chronometers: constraining the equation of state of dark energy. II. A spectroscopic catalog of red galaxiesin galaxy clusters. Astrophys. J. Suppl. Ser. 188, 280 (2010)

    Article  ADS  Google Scholar 

  234. Sundell, P., Mörtsell, E., Vilja, I.: Can a void mimic the \(\varLambda \) in \(\varLambda \)CDM? J. Cosmol. Astropart. Phys. 8, 037 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  235. Suzuki, N., Rubin, D., Lidman, C., et al.: The hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above z\(>\)1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012)

    Article  ADS  Google Scholar 

  236. Tammann, G.A., Reindl, B.: The luminosity of supernovae of type Ia from tip of the red-giant branch distances and the value of H\(_{0}\). Astron. Astrophys. 549, A136 (2013)

    Article  ADS  Google Scholar 

  237. Terlevich, R., Melnick, J.: The dynamics and chemical composition of giant extragalactic H II regions. MNRAS 195, 839 (1981)

    Article  ADS  Google Scholar 

  238. Tokutake, M., Ichiki, K., Yoo, C.-M.: Observational constraint on spherical inhomogeneity with CMB and local hubble parameter. (2017). arXiv:1712.04229

  239. Tolman, R.C.: Effect of inhomogeneity on cosmological models. Proc. Natl. Acad. Sci. 20, 169 (1934)

    Article  ADS  MATH  Google Scholar 

  240. Tripp, R.: A two-parameter luminosity correction for Type IA supernovae. Astron. Astrophys. 331, 815 (1998)

    ADS  Google Scholar 

  241. Tsujikawa, S.: Quintessence: a review. Class. Quant. Gravity 30, 214003 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  242. Tutusaus, I., Lamine, B., Blanchard, A., et al.: Power law cosmology model comparison with CMB scale information. Phys. Rev. D 94, 103511 (2016)

    Article  ADS  Google Scholar 

  243. Tutusaus, I., Lamine, B., Dupays, A., Blanchard, A.: Is cosmic acceleration proven by local cosmological probes? Astron. Astrophys. 602, A73 (2017)

    Article  ADS  Google Scholar 

  244. Uemura, M., Kawabata, K.S., Ikeda, S., Maeda, K.: Variable selection for modeling the absolute magnitude at maximum of type Ia supernovae. Publ. Astron. Soc. Pac. 67, 55 (2015)

    Article  ADS  Google Scholar 

  245. Vargas, C.Z., Falciano, F.T., Reis, R.R.R.: Discrepancy in parameter constraints for LTB models using BAO and SNIa. Class. Quant. Gravity 34, 025002 (2017)

    Article  ADS  Google Scholar 

  246. Verde, L., Protopapas, P., Jimenez, R.: Planck and the local universe: quantifying the tension. Phys. Dark Univ. 2, 166 (2013)

    Article  Google Scholar 

  247. Walker, A.G.: On Milne’s theory of world-structure. Proc. Lond. Math. Soc. s2–42, 90 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  248. Wang, B., Han, Z.: Progenitors of type Ia supernovae. New A Rev. 56, 122 (2012)

    Article  ADS  Google Scholar 

  249. Wang, Y., Xu, L., Zhao, G.-B.: A measurement of the hubble constant using galaxy redshift surveys. Astrophys. J. 849, 84 (2017)

    Article  ADS  Google Scholar 

  250. Wei, H.: Observational constraints on cosmological models with the updated long gamma-ray bursts. J. Cosmol. Astropart. Phys. 1008, 020 (2010)

    Article  ADS  Google Scholar 

  251. Wen, S., Wang, S., Luo, X.: Comparing dark energy models with current observational data. (2017). arXiv:1708.03143

  252. Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  253. Weyant, A., Wood-Vasey, W.M., Joyce, R., et al.: The first data release from SweetSpot: 74 supernovae in 36 nights on WIYN+WHIRC. (2017). arXiv:1703.02402

  254. Whitbourn, J.R., Shanks, T.: The local hole revealed by galaxy counts and redshifts. MNRAS 437, 2146 (2014)

    Article  ADS  Google Scholar 

  255. Willick, J.A., Batra, P.: A determination of the hubble constant from cepheid distances and a model of the local peculiar velocity field. Astrophys. J. 548, 564 (2001)

    Article  ADS  Google Scholar 

  256. Wojtak, R., Prada, F.: Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models. MNRAS 470, 4493 (2017)

    Article  ADS  Google Scholar 

  257. Wood-Vasey, W.M., Miknaitis, G., Stubbs, C.W., et al.: Observational constraints on the nature of dark energy: first cosmological results from the ESSENCE supernova survey. Astrophys. J. 666, 694 (2007)

    Article  ADS  Google Scholar 

  258. Yang, W., Pan, S., Paliathanasis, A.: Latest astronomical constraints on some nonlinear parametric dark energy models. MNRAS 475(2), 2605–2613 (2018)

    Article  ADS  Google Scholar 

  259. Zeldovich, Y.B.: Cosmological constant and elementary particles. JETP Lett. 6, 316 (1967)

    ADS  Google Scholar 

  260. Zhang, B.R., Childress, M.J., Davis, T.M., et al.: A blinded determination of H\(_{0}\) from low-redshift type Ia supernovae, calibrated by Cepheid variables. MNRAS 471, 2254 (2017)

    Article  ADS  Google Scholar 

  261. Zhang, C., Zhang, H., Yuan, S., et al.: Four new observational H(z) data from luminous red galaxies in the Sloan Digital Sky survey data release seven. Res. Astron. Astrophys. 14, 1221 (2014)

    Article  ADS  Google Scholar 

  262. Zhang, Z.-S., Zhang, T.-J., Wang, H., Ma, C.: Testing the Copernican principle with the Hubble parameter. Phys. Rev. D 91, 063506 (2015)

    Article  ADS  Google Scholar 

  263. Zhao, G.-B., Raveri, M., Pogosian, L., et al.: Dynamical dark energy in light of the latest observations. Nat. Astron. 1, 627 (2017)

    Article  ADS  Google Scholar 

  264. Zhu, Z.-H., Hu, M., Alcaniz, J.S., Liu, Y.-X.: Testing power-law cosmology with galaxy clusters. Astron. Astrophys. 483, 15 (2008)

    Article  ADS  Google Scholar 

  265. Zibin, J.P.: Scalar perturbations on Lemaître-Tolman-Bondi spacetimes. Phys. Rev. D 78, 043504 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  266. Zibin, J.P.: Can decaying modes save void models for acceleration? Phys. Rev. D 84, 123508 (2011)

    Article  ADS  Google Scholar 

  267. Zlatev, I., Wang, L., Steinhardt, P.J.: Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896 (1999)

    Article  ADS  Google Scholar 

  268. Zumalacárregui, M., García-Bellido, J., Ruiz-Lapuente, P.: Tension in the void: cosmic rulers strain inhomogeneous cosmologies. J. Cosmol. Astropart. Phys. 10, 009 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by ASI Grant No. 2016-24-H.0. We thank Giuseppe Bono for his constructive comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Luković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luković, V.V., Haridasu, B.S. & Vittorio, N. Cosmological Constraints from Low-Redshift Data. Found Phys 48, 1446–1485 (2018). https://doi.org/10.1007/s10701-018-0202-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0202-z

Keywords

Navigation