Skip to main content
Log in

The X-ray Chirp of a Compact Black Hole Binary

A Phase Template for the Gravitational Wave Inspiral

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The gravitational waves (GWs) from a binary black hole with masses \(10^4\lesssim M\lesssim 10^7\mathrm{M_\odot }\) can be detected with the Laser Interferometer Space Antenna (LISA) once their orbital frequency exceeds 10\(^{-4}\)–10\(^{-5}\) Hz. The binary separation at this stage is \(a=O(100)R_{\mathrm{g}}\) (gravitational radius), and the orbital speed is \(v/c=O(0.1)\). I argue that at this stage, the binary will be producing bright electromagnetic (EM) radiation via gas bound to the individual BHs. Both BHs will have their own photospheres in X-ray and possibly also in optical bands. Relativistic Doppler modulations and lensing effects will inevitably imprint periodic variability in the EM light-curve, tracking the phase of the orbital motion, and serving as a template for the GW inspiral waveform. Advanced localization of the source by LISA weeks to months prior to merger will enable a measurement of this EM chirp by wide-field X-ray or optical instruments. A comparison of the phases of the GW and EM chirp signals will help break degeneracies between system parameters, and probe a fractional difference difference \(\Delta v\) in the propagation speed of photons and gravitons as low as \(\Delta v/c \approx 10^{-17}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Ref. [34] considered a similar Doppler modulation that would arise following the tidal disruption of a star by a massive BBH at somewhat larger separations, but did not consider simultaneous direct measurement of GWs.

  2. For a circular orbit; non-sinusoidal modulations from eccentric orbits are easily incorporated into the analysis.

  3. See www.lsst.org.

  4. See www.cosmos.esa.int/web/athena.

  5. See wwwastro.msfc.nasa.gov/lynx.

  6. D.J. D’Orazio and R. Di Stefano, in preparation.

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al.: Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6(4), 041015 (2016)

    Google Scholar 

  2. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al.: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016)

    Article  ADS  Google Scholar 

  3. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R.X., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Amaro-Seoane, P., et al.: Laser Interferometer Space Antenna. Proposal submitted to ESA (2017)

  5. Artymowicz, P., Lubow, S.H.: Dynamics of binary-disk interaction. 1: resonances and disk gap sizes. Astrophys. J. 421, 651–667 (1994)

    Article  ADS  Google Scholar 

  6. Artymowicz, P., Lubow, S.H.: Mass flow through gaps in circumbinary disks. Astrophys. J. Lett. 467, L77+ (1996)

    Article  ADS  Google Scholar 

  7. Bartos, I., Kocsis, B., Haiman, Z., Márka, S.: Rapid and bright stellar-mass binary black hole mergers in active galactic nuclei. Astrophys. J. 835, 165 (2017)

    Article  ADS  Google Scholar 

  8. Bellovary, J.M., Mac Low, M.M., McKernan, B., Ford, K.E.S.: Migration traps in disks around supermassive black holes. Astrophys. J. Lett. 819, L17 (2016)

    Article  ADS  Google Scholar 

  9. Berti, E., Buonanno, A., Will, C.M.: Testing general relativity and probing the merger history of massive black holes with LISA. Class. Quantum Gravity 22, S943–S954 (2005)

    Article  ADS  Google Scholar 

  10. Bloom, J.S., et al.: Astro2010 decadal survey whitepaper: coordinated science in the gravitational and electromagnetic skies. In: The Astronomy and Astrophysics Decadal Survey (2010). http://adsabs.harvard.edu/abs/2009arXiv0902.1527B

  11. Bode, T., Haas, R., Bogdanović, T., Laguna, P., Shoemaker, D.: Relativistic mergers of supermassive black holes and their electromagnetic signatures. Astrophys. J. 715, 1117–1131 (2010)

    Article  ADS  Google Scholar 

  12. Bowen, D.B., Campanelli, M., Krolik, J.H., Mewes, V., Noble, S.C.: Relativistic dynamics and mass exchange in binary black hole mini-disks. Astrophys. J. 838, 42 (2017)

    Article  ADS  Google Scholar 

  13. Chartas, G., Rhea, C., Kochanek, C., Dai, X., Morgan, C., Blackburne, J., Chen, B., Mosquera, A., MacLeod, C.: Gravitational lensing size scales for quasars. Astronom. Nachr. 337, 356 (2016)

    Article  ADS  Google Scholar 

  14. Chung, D.J., Kolb, E.W., Riotto, A.: Extra dimensions present a new flatness problem. Phys. Rev. D 65(8), 083516 (2002)

    Article  ADS  Google Scholar 

  15. Csáki, C., Erlich, J., Grojean, C.: ESSAY: the cosmological constant problem in brane-worlds and gravitational Lorentz violations. Gen. Relativ. Gravit. 33, 1921–1927 (2001)

    Article  ADS  Google Scholar 

  16. Cuadra, J., Armitage, P.J., Alexander, R.D., Begelman, M.C.: Massive black hole binary mergers within subparsec scale gas discs. MNRAS 393, 1423–1432 (2009)

    Article  ADS  Google Scholar 

  17. Cutler, C., Hiscock, W.A., Larson, S.L.: LISA, binary stars, and the mass of the graviton. Phys. Rev. D 67(2), 024015 (2003)

    Article  ADS  Google Scholar 

  18. Dai, X., Kochanek, C.S., Chartas, G., Kozłowski, S., Morgan, C.W., Garmire, G., Agol, E.: The sizes of the X-ray and optical emission regions of RXJ 1131–1231. Astrophys. J. 709, 278–285 (2010)

    Article  ADS  Google Scholar 

  19. Deffayet, C., Menou, K.: Probing gravity with spacetime sirens. Astrophys. J. Lett. 668, L143–L146 (2007)

    Article  ADS  Google Scholar 

  20. D’Orazio, D.J., Haiman, Z., Duffell, P., MacFadyen, A., Farris, B.: A transition in circumbinary accretion discs at a binary mass ratio of 1:25. MNRAS 459, 2379–2393 (2016)

    Article  ADS  Google Scholar 

  21. D’Orazio, D.J., Haiman, Z., MacFadyen, A.: Accretion into the central cavity of a circumbinary disc. MNRAS 436, 2997–3020 (2013)

    Article  ADS  Google Scholar 

  22. D’Orazio, D.J., Haiman, Z., Schiminovich, D.: Relativistic boost as the cause of periodicity in a massive black-hole binary candidate. Nature 525, 351–353 (2015)

    Article  ADS  Google Scholar 

  23. Dubovsky, S.L., Tinyakov, P.G., Tkachev, I.I.: Massive graviton as a testable Cold-Dark-Matter candidate. Phys. Rev. Lett. 94(18), 181102 (2005)

    Article  ADS  Google Scholar 

  24. Farris, B.D., Duffell, P., MacFadyen, A.I., Haiman, Z.: Binary black hole accretion from a circumbinary disk: gas dynamics inside the central cavity. Astrophys. J. 783, 134 (2014)

    Article  ADS  Google Scholar 

  25. Farris, B.D., Duffell, P., MacFadyen, A.I., Haiman, Z.: Binary black hole accretion during inspiral and merger. MNRAS 447, L80–L84 (2015)

    Article  ADS  Google Scholar 

  26. Farris, B.D., Duffell, P., MacFadyen, A.I., Haiman, Z.: Characteristic signatures in the thermal emission from accreting binary black holes. MNRAS 446, L36–L40 (2015)

    Article  ADS  Google Scholar 

  27. Frank, J., King, A., Raine, D.J.: Accretion Power in Astrophysics, 3rd edn. Cambridge University Press, Cambridge, UK (2002)

    Book  Google Scholar 

  28. Gold, R., Paschalidis, V., Ruiz, M., Shapiro, S.L., Etienne, Z.B., Pfeiffer, H.P.: Accretion disks around binary black holes of unequal mass: general relativistic MHD simulations of postdecoupling and merger. Phys. Rev. D 90(10), 104030 (2014)

    Article  ADS  Google Scholar 

  29. Graham, M.J., Djorgovski, S.G., Stern, D., Glikman, E., Drake, A.J., Mahabal, A.A., Donalek, C., Larson, S., Christensen, E.: A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 518, 74–76 (2015)

    Article  ADS  Google Scholar 

  30. Guerras, E., Dai, X., Steele, S., Liu, A., Kochanek, C.S., Chartas, G., Morgan, C.W., Chen, B.: Extended X-ray monitoring of gravitational lenses with Chandra and joint constraints on X-ray emission regions. Astrophys. J. 836, 206 (2017)

    Article  ADS  Google Scholar 

  31. Haiman, Z.: Electromagnetic chirp of a compact binary black hole: a phase template for the gravitational wave inspiral. Phys. Rev. D 96(2), 023004 (2017)

    Article  ADS  Google Scholar 

  32. Haiman, Z., Kocsis, B., Menou, K.: The population of viscosity- and gravitational wave-driven supermassive black hole binaries among luminous active galactic nuclei. Astrophys. J. 700, 1952–1969 (2009)

    Article  ADS  Google Scholar 

  33. Hassan, S.F., Rosen, R.A.: Resolving the ghost problem in nonlinear massive gravity. Phys. Rev. Lett. 108(4), 041101 (2012)

    Article  ADS  Google Scholar 

  34. Hayasaki, K., Loeb, A.: Detection of gravitational wave emission by supermassive black hole binaries through tidal disruption flares. Sci. Rep. 6, 35629 (2016)

    Article  ADS  Google Scholar 

  35. Hayasaki, K., Mineshige, S., Sudou, H.: Binary black hole accretion flows in merged galactic nuclei. Publ. Astron. Soc. Jpn. 59, 427–441 (2007)

    Article  ADS  Google Scholar 

  36. Jacobson, T., Mattingly, D.: Einstein-aether waves. Phys. Rev. D 70(2), 024003 (2004)

    Article  ADS  Google Scholar 

  37. Jiménez-Vicente, J., Mediavilla, E., Kochanek, C.S., Muñoz, J.A.: Probing the dark matter radial profile in lens galaxies and the size of X-ray emitting region in quasars with microlensing. Astrophys. J. 806, 251 (2015)

    Article  ADS  Google Scholar 

  38. Kauffmann, G., Haehnelt, M.: A unified model for the evolution of galaxies and quasars. MNRAS 311, 576–588 (2000)

    Article  ADS  Google Scholar 

  39. Klein, A., Barausse, E., Sesana, A., Petiteau, A., Berti, E., Babak, S., Gair, J., Aoudia, S., Hinder, I., Ohme, F., Wardell, B.: Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D 93(2), 024003 (2016)

    Article  ADS  Google Scholar 

  40. Kocsis, B., Haiman, Z., Menou, K.: Premerger localization of gravitational wave standard sirens with LISA: triggered search for an electromagnetic counterpart. Astrophys. J. 684, 870–887 (2008)

    Article  ADS  Google Scholar 

  41. Kocsis, B., Yunes, N., Loeb, A.: Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks. Phys. Rev. D 84(2), 024032 (2011)

    Article  ADS  Google Scholar 

  42. Kulkarni, G., Loeb, A.: Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral. MNRAS 456, 3964–3971 (2016)

    Article  ADS  Google Scholar 

  43. Lang, R.N., Hughes, S.A.: Localizing coalescing massive black hole binaries with gravitational waves. Astrophys. J. 677, 1184–1200 (2008)

    Article  ADS  Google Scholar 

  44. MacFadyen, A.I., Milosavljević, M.: An eccentric circumbinary accretion disk and the detection of binary massive black holes. Astrophys. J. 672, 83–93 (2008)

    Article  ADS  Google Scholar 

  45. McWilliams, S.T., Lang, R.N., Baker, J.G., Thorpe, J.I.: Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries. Phys. Rev. D 84(6), 064003 (2011)

    Article  ADS  Google Scholar 

  46. Miniutti, G., Fabian, A.C.: A light bending model for the X-ray temporal and spectral properties of accreting black holes. MNRAS 349, 1435–1448 (2004)

    Article  ADS  Google Scholar 

  47. Morgan, C.W., Kochanek, C.S., Morgan, N.D., Falco, E.E.: The quasar accretion disk size—black hole mass relation. e-print ArXiv:0707:0305 (2007)

  48. Nixon, C.J., Cossins, P.J., King, A.R., Pringle, J.E.: Retrograde accretion and merging supermassive black holes. MNRAS 412, 1591–1598 (2011)

    Article  ADS  Google Scholar 

  49. Noble, S.C., et al.: Circumbinary magnetohydrodynamic accretion into inspiraling binary black holes. Astrophys. J. 755, 51 (2012)

    Article  ADS  Google Scholar 

  50. Paczynski, B.: A model of accretion disks in close binaries. Astrophys. J. 216, 822–826 (1977)

    Article  ADS  Google Scholar 

  51. Peters, P.C.: Gravitational radiation and the motion of two point masses. Phys. Rev. 136, 1224–1232 (1964)

    Article  ADS  Google Scholar 

  52. Phinney, E.S.: Finding and using electromagnetic counterparts of gravitational wave sources. In: The Astronomy and Astrophysics Decadal Survey (2010). http://adsabs.harvard.edu/abs/2009astro2010S.235P

  53. Reynolds, C.S., Nowak, M.A.: Fluorescent iron lines as a probe of astrophysical black hole systems. Phys. Rep. 377(6), 389–466 (2003). http://www.sciencedirect.com/science/article/pii/S0370157302005847

    Article  ADS  Google Scholar 

  54. Roedig, C., Dotti, M., Sesana, A., Cuadra, J., Colpi, M.: Limiting eccentricity of subparsec massive black hole binaries surrounded by self-gravitating gas discs. MNRAS 415, 3033–3041 (2011)

    Article  ADS  Google Scholar 

  55. Roedig, C., Krolik, J.H., Miller, M.C.: Observational signatures of binary supermassive black holes. Astrophys. J. 785, 115 (2014)

    Article  ADS  Google Scholar 

  56. Roedig, C., Sesana, A., Dotti, M., Cuadra, J., Amaro-Seoane, P., Haardt, F.: Evolution of binary black holes in self gravitating discs. Dissecting the torques. A&A 545, A127 (2012)

    Article  ADS  Google Scholar 

  57. Schnittman, J.D., Dal Canton, T., Camp, J., Tsang, D., Kelly, B.J.: Electromagnetic chirps from neutron star-black hole mergers. Astrophys. J., submitted. e-print ArXiv:1704.07886 (2017)

  58. Schutz, B.F.: Determining the Hubble constant from gravitational wave observations. Nature 323, 310 (1986)

    Article  ADS  Google Scholar 

  59. Shi, J.M., Krolik, J.H.: Three-dimensional MHD simulation of circumbinary accretion disks. II. Net accretion rate. Astrophys. J. 807, 131 (2015)

    Article  ADS  Google Scholar 

  60. Shi, J.M., Krolik, J.H., Lubow, S.H., Hawley, J.F.: Three-dimensional magnetohydrodynamic simulations of circumbinary accretion disks: disk structures and angular momentum transport. Astrophys. J. 749, 118 (2012)

    Article  ADS  Google Scholar 

  61. Stone, N.C., Metzger, B.D., Haiman, Z.: Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’. MNRAS 464, 946–954 (2017)

    Article  ADS  Google Scholar 

  62. Tang, Y., MacFadyen, A., Haiman, Z.: On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs. MNRAS (in press) (2017)

  63. The LIGO Scientific Collaboration, the Virgo Collaboration, Abbott, B.P., Abbott, R., Abbott, T.D., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., et al.: GW170104: observation of a 50-solar-mass binary black hole coalescence at Redshift 0.2. ArXiv e-prints (2017)

  64. Will, C.M.: Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D 57, 2061–2068 (1998)

    Article  ADS  Google Scholar 

  65. Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9, 3 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the organizers for putting together a very stimulating meeting. I also thank Alessandra Buonanno, Csaba Csáki, Daniel Chung, Kohei Inayoshi, Feryal Ozel, Lorenzo Sironi, and Luigi Stella for useful discussions, and Daniel D’Orazio, Bence Kocsis and Geoffrey Ryan for useful comments on a draft of this manuscript. I also gratefully acknowledge support by a Simons Fellowship in Theoretical Physics (ZH) and by NASA Grant NNX15AB19G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Haiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haiman, Z. The X-ray Chirp of a Compact Black Hole Binary. Found Phys 48, 1430–1445 (2018). https://doi.org/10.1007/s10701-018-0201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0201-0

Keywords

Navigation