Skip to main content
Log in

On Quantum Life of Black Holes

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review some ideas about the quantum physics of black hole information storage and processing in terms of a general phenomenon of quantum criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dvali, G., Gomez, C.: Black holes as critical point of quantum phase transition. Eur. Phys. J. C 74, 2752 (2014). arXiv:1207.4059 [hep-th]

    Article  ADS  Google Scholar 

  2. Dvali, G., Gomez, C.: Black hole’s quantum N-portrait. Fortsch. Phys. 61, 742 (2013). arXiv:1112.3359 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  3. Dvali, G., Gomez, C.: Quantum compositeness of gravity: black holes, AdS and inflation. JCAP 01, 023 (2014). arXiv:1312.4795

    Article  ADS  MathSciNet  Google Scholar 

  4. Dvali, G., Flassig, D., Gomez, C., Pritzel, A., Wintergerst, N.: Scrambling in the black hole portrait. Phys. Rev. D 88(12), 124041 (2013). arXiv:1307.3458 [hep-th]

    Article  ADS  Google Scholar 

  5. Dvali, G., Franca, A., Gomez, C., Wintergerst, N.: Nambu–Goldstone effective theory of information at quantum criticality. Phys. Rev. D 92(12), 125002 (2015). arXiv:1507.02948 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  6. Flassig, D., Pritzel, A., Wintergerst, N.: Black holes and quantumness on macroscopic scales. Phys. Rev. D 87(8), 084007 (2013). arXiv:1212.3344 [hep-th]

    Article  ADS  Google Scholar 

  7. Dvali, G., Panchenko, M.: Black hole type quantum computing in critical Bose–Einstein systems, arXiv:1507.08952 [hep-th]

  8. Dvali, G., Panchenko, M.: Black hole based quantum computing in labs and in the sky. Fortschr. Phys. 64(8–9), 569–580 (2016). arXiv:1601.01329 [hep-th]

    Article  MathSciNet  Google Scholar 

  9. Dvali, G., Gomez, C.: Black hole’s 1/N hair. Phys. Lett. B 719, 419 (2013). arXiv:1203.6575 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. Dvali, G., Gomez, C., Lüst, D.: Black hole quantum mechanics in the presence of species. Fortsch. Phys. 61, 768 (2013). arXiv:1206.2365 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  11. Veneziano, G.: Quantum hair and the string-black hole correspondence. Class. Quant. Gravity 30, 092001 (2013). arXiv:1212.2606 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. Binetruy, P.: Vacuum energy, holography and a quantum portrait of the visible universe. arXiv:1208.4645 [gr-qc]

  13. Casadio, R.: Charged shells and elementary particles. Int. J. Mod. Phys. A 28, 1350088 (2013). [arXiv:1303.1274 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  14. Casadio, R., Orlandi, A.: Quantum harmonic black holes. JHEP 1308, 025 (2013). arXiv:1302.7138 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  15. Casadio, R., Giugno, A., Micu, O., Orlandi, A.: Black holes as self-sustained quantum states, and Hawking radiation. arXiv:1405.4192 [hep-th]

  16. Mück, W.: Counting photons in static electric and magnetic fields. Eur. Phys. J. C 73, 2679 (2013). arXiv:1310.6909 [hep-th]

    Article  ADS  Google Scholar 

  17. Casadio, R., Micu, O., Scardigli, F.: Quantum hoop conjecture: black hole formation by particle collisions. Phys. Lett. B 732, 105 (2014). arXiv:1311.5698 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  18. Kuhnel, F.: Bose–Einstein condensates with derivative and long-range interactions as set-ups for analog black holes. arXiv:1312.2977 [gr-qc]

  19. Kuhnel, F., Sundborg, B.: Modified Bose–Einstein condensate black holes in d dimensions. arXiv:1401.6067 [hep-th]

  20. Chen, M., Huang, Y.C.: Gas model of gravitons with light speed. arXiv:1402.5767 [gr-qc]

  21. Mück, W.: On the number of soft quanta in classical field configurations. Can. J. Phys. 92(9), 973–975 (2014). arXiv:1306.6245 [hep-th]

    Article  ADS  Google Scholar 

  22. Mück, W., Pozzo, G.: Quantum portrait of a black hole with Pöschl–Teller potential. JHEP 05, 128 (2014). arXiv:1403.1422 [hep-th]

    Article  ADS  Google Scholar 

  23. Casadio, R., Giugno, A., Orlandi, A.: Thermal corpuscular black holes. Phys. Rev. D 91, 124069 (2015). arXiv:1504.05356 [gr-qc]

    Article  ADS  Google Scholar 

  24. Kühnel, F., Sandstad, M.: Baryon number conservation in Bose–Einstein condensate black holes. arXiv:1506.08823 [gr-qc]

  25. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7(8), 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  26. ’t Hooft, G.: Dimensional reduction in quantum gravity, arXiv:gr-qc/9310026

  27. Bogoliubov, N.: On the theory of superfluidity. J. Phys. 11, 23–32 (1947)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This note is based on the talk given at Lemaitre Workshop “Black Holes, Gravitational Waves and Spacetime Singularities”, at Vatican Observatory. It is a great pleasure to thank the organizers of Lemaitre Workshop for invitation to a very exciting meeting. The work presented here was supported in part by the Humboldt Foundation under Humboldt Professorship Award, ERC Advanced Grant 339169 “Selfcompletion”, by TR 33 “The Dark Universe”, and by the DFG cluster of excellence “Origin and Structure of the Universe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gia Dvali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvali, G. On Quantum Life of Black Holes. Found Phys 48, 1219–1225 (2018). https://doi.org/10.1007/s10701-018-0175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0175-y

Keywords

Navigation