Skip to main content
Log in

On the Mössbauer Effect and the Rigid Recoil Question

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The rigid recoil of a crystal is the accepted mechanism for the Mössbauer effect. It’s at odds with the special theory of relativity which does not allow perfectly rigid bodies. The standard model of particle physics which includes QED should not allow any signals to be transmitted faster than the speed of light. If perturbation theory can be used, then the X-ray emitted in a Mössbauer decay must come from a single nuclear decay vertex at which the 4-momentum is exactly conserved in a Feynman diagram. Then the 4-momentum of the final state Mössbauer nucleus must be slightly off the mass shell. This off-shell behavior would be followed by subsequent diffusion of momentum throughout the crystal to bring the nucleus back onto the mass shell and the crystal to a final relaxed state in which it moves rigidly with the appropriate recoil velocity. This mechanism explains the Mössbauer effect at the microscopic level and reconciles it with relativity. Because off-mass-shell quantum mechanics is required, the on-mass-shell theories developed originally for the Mössbauer effect are inadequate. Another possibility is that that the recoil response involves a non-perturbative effect in the standard model which could allow for a non-local instantaneous momentum transfer between the crystal and the decay (or absorption), as proposed for example by Preparata and others in super-radiance theory. The recoil time of the crystal is probably not instantaneous, and if it could be measured, one could distinguish between various theories. An experiment is proposed in this paper to measure this time. The idea is to measure the total energy radiated due to bremsstrahlung from a charged Mössbauer crystal which has experienced a recoil. Using Larmor’s formula, along with corrections to it, allows one to design an experiment. The favored idea is to use many small nano-spheres of Mössbauer-active metals, whose outer surfaces are charged. The energy radiated then varies as the charge squared divided by the recoil time. This can then be measured with the extreme sensitivity available in Mössbauer experiments. If it turns out that experiments prove the need for off-mass-shell theory, then this would have profound implications for all of condensed matter physics. It would mean that an off-mass-shell theory like those considered by Stueckelberg, Horwitz, Piron, Greenberger, and many others are required to describe nature. The inclusion of these would be a major shift in the foundations. It would mean that there are new dynamic variables—the rest masses of particles. The ability to measure the diffusion relaxation time should prove useful also in chemical analysis, and provide a new class of analytical methods for material science. This problem is also interesting because the Mössbauer effect is a phenomenon where the solid-state environment dramatically and indisputably influences the probability of a nuclear process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bohm, D., Weinstein, M.: The self-oscillations of a charged particle. Phys. Rev. 74(12), 1789–1798 (1948)

    Article  ADS  MATH  Google Scholar 

  2. Bressani, T., Del Giudice, E., Preparata, G.: What makes a crystal “stiff” enough for the Mössbauer effect? Il Nuovo Cimento D 14(3), 345–349 (1992)

    Article  ADS  Google Scholar 

  3. Chen, Y.-L., Yang, D.-P.: Mössbauer Effect in Lattice Dynamics: Experimental Techniques and Applications. Wiley, New York (2007)

    Book  Google Scholar 

  4. Cheng, Y., Xia, B., Liu, Y.-N., Jin, Q.-X.: Rhodium Mössbauer effect generated by bremsstrahlung excitation. Chin. Phys. Lett. 22, 2530–2533 (2005)

    Article  ADS  Google Scholar 

  5. Davydov, A.V., Isaev, Y.N., Kalantarov, V.D., Korotkov, M.M., Migachev, V.V., Novozhilov, Y.B., Stepanov, A.M.: Gravitational gamma spectrometer for studying the gamma resonance of the long-lived isomer 103mrh. arXiv:1512.08576 [nucl-ex, physics:physics], (2015)

  6. Fanchi, J.R.: Parametrized Relativistic Quantum Theory. Springer, New York (1993)

    Book  Google Scholar 

  7. Fock, V.: Die eigenzeit in der klassischen und in der quantenmechanik. Phys. Z. Sowjetunion 12, 404–425 (1937)

    MATH  Google Scholar 

  8. Franklin, J.: Rigid body motion in special relativity. Found. Phy. 43(12), 1489–1501 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Frauenfelder, H.: The Mossbauer Effect: A Review, with a Collection of Reprints. Benjamin, W.A, New York (1962)

    MATH  Google Scholar 

  10. Fultz, B.: Characterization of materials. In: Kaufmann, E. (ed.) Mössbauer Spectrometry. Wiley, New York (2011)

    Google Scholar 

  11. Gibb, I.C.: Principles of Mössbauer Spectroscopy. Springer, Berlin (2013)

    Google Scholar 

  12. Goedecke, G.H.: Classically radiationless motions and possible implications for quantum theory. Phys. Rev. 135, B281–B288 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Greenberger, D.M.: Theory of particles with variable mass. I. Formalism. J. Math. Phys. 11(8), 2329–2340 (1970)

    Article  ADS  Google Scholar 

  14. Greenberger, D.M.: Theory of particles with variable mass. II. Some physical consequences. J. Math. Phys. 11(8), 2341–2347 (1970)

    Article  ADS  Google Scholar 

  15. Greenberger, D.M.: Some useful properties of a theory of variable mass particles. J. Math. Phys. 15(4), 395 (1974)

    Article  ADS  MATH  Google Scholar 

  16. Greenberger, D.M.: Wavepackets for particles of indefinite mass. J. Math. Phys. 15(4), 406 (1974)

    Article  ADS  Google Scholar 

  17. Greenwood, N.N., Gibb, T.C.: The Mössbauer effect. In: Siegbahn, K. (ed.) Mössbauer Spectroscopy, pp. 1–16. Springer, Berlin (1971)

    Chapter  Google Scholar 

  18. Horwitz, L.P., Piron, C.: Relativistic dynamics. Helv. Phys. Acta 46(3), 316–326 (1973)

    Google Scholar 

  19. Horwitz, L.: A statistical mechanical model for mass stability in the SHP theory. arXiv:1607.03742 [physics], (2016)

  20. Horwitz, L.P.: Relativistic Quantum Mechanics. Springer, Dordrecht (2015)

    Book  MATH  Google Scholar 

  21. Land, M.: Speeds of light and mass stability in Stueckelberg–Horwitz–Piron electrodynamics. arXiv:1604.01638 [hep-th, physics:physics], (2016)

  22. Lipkin, H.J.: Some simple features of the Mössbauer effect. Ann. Phys. Phys. 9(2), 332–339 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lipkin, H.J.: Quantum Mechanics: New Approaches to Selected Topics. Courier Corporation, Chelmsford (2007)

    Google Scholar 

  24. Lipkin, H.J.: Quantum Mechanics: New Approaches to Selected Topics. Courier Corporation, Chelmsford (2014)

    Google Scholar 

  25. Lippmann, B.A., Schwinger, J.: Variational principles for scattering processes. I. Phys. Rev. 79(3), 469–480 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Long, G.J., Grandjean, F.: Mössbauer Spectroscopy Applied to Inorganic Chemistry. Springer Science & Business Media, Dordrecht (2013)

    Google Scholar 

  27. Mørup, S.: Mössbauer effect in small particles. Hyperfine Interact. 60, 959–973 (1990)

    Article  ADS  Google Scholar 

  28. Mössbauer, R.L.: Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Zeitschrift für Physik 151(2), 124–143 (1958)

    Article  ADS  Google Scholar 

  29. Oerter, R.: The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics. Plume, New York (2006)

    Google Scholar 

  30. Pearle, P.: When can a classical electron accelerate without radiating? Found. Phys. 8(11–12), 879–891 (1978)

    Article  ADS  Google Scholar 

  31. Preparata, G.: QED Coherence in Matter. World Scientific, Singapore (1995)

    Book  Google Scholar 

  32. Rohrlich, F.: The dynamics of a charged sphere and the electron. Am. J. Phys. 65(11), 1051–1056 (1997)

    Article  ADS  Google Scholar 

  33. Schott, G.A.: The electromagnetic field of a moving uniformly and rigidly electrified sphere and its radiationless orbits. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15(100), 752–761 (1933)

    Article  MATH  Google Scholar 

  34. Sharma, V.K., Klingelhofer, G., Nishida, T.: Mossbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology. Wiley, Garden City (2013)

    Book  Google Scholar 

  35. Stevens, J.S., Dunlap, B.D.: Nuclear moments and moment ratios as determined by Mössbauer spectroscopy. J. Phys. Chem. Ref. Data 5(4), 1093–1122 (1976)

    Article  ADS  Google Scholar 

  36. Stueckelberg, E.: La signification du temps propre en mécanique ondulatoire. Helv. Phys. Acta 14, 322–323 (1941)

    MathSciNet  MATH  Google Scholar 

  37. Stueckelberg, E.: Remarque à propos de la création de paires de particules en théorie de la relativité. Helv. Phys. Acta 14, 588–594 (1941)

    MathSciNet  MATH  Google Scholar 

  38. Weisskopf, V.: Selected topics in theoretical physics. In: Brittin, W.E., et al. (eds.) Lectures in Theoretical Physics, pp. 54–105. Interscience, New York (1961)

    Google Scholar 

  39. Yaghjian, A.: Relativistic dynamics of a charged sphere: updating the LorentzAbraham model. Technical Report RL-TR-92-46, Rome Laboratory, Air Force Systems Command, Griffiss Air Force Base, New York pp. 13441-5700 (1992)

  40. Yaghjian, A.: Relativistic Dynamics of a Charged Sphere: Updating the Lorentz-Abraham Model, 2nd edn. Springer, Berlin (2005)

    Google Scholar 

Download references

Acknowledgements

I would like to acknowledge useful discussions and correspondence with Lawrence Horwitz, Martin Land, Vladimir Kresin, and Robert Perlmutter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Davidson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidson, M. On the Mössbauer Effect and the Rigid Recoil Question. Found Phys 47, 327–354 (2017). https://doi.org/10.1007/s10701-017-0064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0064-9

Keywords

Navigation