Skip to main content
Log in

Bouncing Cosmologies: Progress and Problems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review the status of bouncing cosmologies as alternatives to cosmological inflation for providing a description of the very early universe, and a source for the cosmological perturbations which are observed today. We focus on the motivation for considering bouncing cosmologies, the origin of fluctuations in these models, and the challenges which various implementations face.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For critical views on how inflation addresses the flatness and entropy problems the reader is referred to [6, 7] and [8,9,10] respectively.

  2. We shall not here consider those mixed models in which a contracting phase followed by a bounce leads to an inflationary era. Such models enjoy the benefits of both paradigms, but also imply a higher level of sophistication which, at the present time, may not be required by the data; Occam’s razor demands they should be introduced only at a later stage if needed.

  3. Not all cosmologists accept that inflation is predictive, citing the “multiverse” issue as a problem [52]—but see [53] for another view on this issue.

  4. Here we are using a convention for the Fourier transform in which the Fourier modes have mass dimension \(-3/2\) plus the mass dimension of the position space quantity.

  5. It should be noted that in [139], a regular scalar field was used in conjunction with positive spatial curvature to avoid the primordial singularity through a bounce: a special state was assumed, with very large occupation number, that was leading to a direct violation of the NEC.

  6. In this subsection we use the convention that the mass dimension of \(\zeta (k)\) is \(-3\) and not \(-3/2\) as we did earlier in this review.

  7. Models of inflation based on matter which violates the NEC can yield a blue spectrum, see e.g. [247].

  8. For an elaboration on this point, see [54].

  9. Note that a similar problem arises during reheating in inflationary cosmology.

References

  1. Guth, A.H.: The Inflationary Universe: A Possible Solution To The Horizon And Flatness Problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  2. Brout, R., Englert, F., Gunzig, E.: The creation of the universe as a quantum phenomenon. Ann. Phys. 115, 78 (1978)

    Article  ADS  Google Scholar 

  3. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  4. Sato, K.: First order phase transition of a vacuum and expansion of the universe. Mon. Not. R. Astron. Soc. 195, 467 (1981)

    Article  ADS  Google Scholar 

  5. Fang, L.Z.: Entropy generation in the early universe by dissipative processes near the Higgs’ phase transitions. Phys. Lett. B 95, 154 (1980)

    Article  ADS  Google Scholar 

  6. Vachaspati, T., Trodden, M.: Causality and cosmic inflation. Phys. Rev. D 61, 023502 (1999). doi:10.1103/PhysRevD.61.023502

    Article  ADS  MathSciNet  Google Scholar 

  7. Berezhiani, L., Trodden, M.: How Likely are Constituent Quanta to Initiate Inflation? Phys. Lett. B 749, 425 (2015). doi:10.1016/j.physletb.2015.08.007. arXiv:1504.01730

    Article  ADS  Google Scholar 

  8. Penrose, R.: Difficulties with inflationary cosmology. Ann. N. Y. Acad. Sci. 571, 249 (1989)

    Article  ADS  Google Scholar 

  9. Gibbons, G.W., Turok, N.: The measure problem in cosmology. Phys. Rev. D 77, 063516 (2008). doi:10.1103/PhysRevD.77.063516

    Article  ADS  Google Scholar 

  10. Carroll, S.M., Tam, H.: Unitary Evolution and Cosmological Fine-Tuning, arXiv:1007.1417

  11. Mukhanov, V., Chibisov, G.: Quantum fluctuation and nonsingular universe. JETP Lett. 33, 532 (1981). In Russian Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)

    ADS  Google Scholar 

  12. Press, W.H.: Spontaneous production of the Zel’dovich spectrum of cosmological fluctuations. Phys. Scripta 21, 702 (1980). doi:10.1088/0031-8949/21/5/021

    Article  ADS  Google Scholar 

  13. Sato, K.: First order phase transition of a vacuum and expansion of the universe. Mon. Not. R. Astron. Soc. 195, 467 (1981)

    Article  ADS  Google Scholar 

  14. Brandenberger, R.H.: Inflationary cosmology: progress and problems. arXiv:hep-ph/9910410

  15. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rep. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  16. Brandenberger, R.H.: Lectures on the theory of cosmological perturbations. Lect. Notes Phys. 646, 127 (2004). arXiv:hep-th/0306071

    Article  ADS  MATH  Google Scholar 

  17. Hawking, S.W., Penrose, R.: The Singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529 (1970). doi:10.1098/rspa.1970.0021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Borde, A., Vilenkin, A.: Eternal inflation and the initial singularity. Phys. Rev. Lett. 72, 3305 (1994). doi:10.1103/PhysRevLett.72.3305. arXiv:gr-qc/9312022

    Article  ADS  Google Scholar 

  19. Martin, J., Brandenberger, R.H.: The TransPlanckian problem of inflationary cosmology. Phys. Rev. D 63, 123501 (2001). doi:10.1103/PhysRevD.63.123501

    Article  ADS  Google Scholar 

  20. Brandenberger, R.H., Martin, J.: The Robustness of inflation to changes in superPlanck scale physics. Mod. Phys. Lett. A 16, 999 (2001). doi:10.1142/S0217732301004170. arXiv:astro-ph/0005432

    Article  ADS  MATH  Google Scholar 

  21. Niemeyer, J.C.: Inflation with a Planck scale frequency cutoff. Phys. Rev. D 63, 123502 (2001). doi:10.1103/PhysRevD.63.123502. arXiv:astro-ph/0005533

    Article  ADS  Google Scholar 

  22. Niemeyer, J.C., Parentani, R.: Transplanckian dispersion and scale invariance of inflationary perturbations. Phys. Rev. D 64, 101301 (2001). doi:10.1103/PhysRevD.64.101301. arXiv:astro-ph/0101451

    Article  ADS  Google Scholar 

  23. Kempf, A., Niemeyer, J.C.: Perturbation spectrum in inflation with cutoff. Phys. Rev. D 64, 103501 (2001). doi:10.1103/PhysRevD.64.103501. arXiv:astro-ph/0103225

    Article  ADS  Google Scholar 

  24. Starobinsky, A.A.: Robustness of the inflationary perturbation spectrum to transPlanckian physics. JETP Lett. 73, 371 (2001). doi:10.1134/1.1381588. Pisma Zh. Eksp. Teor. Fiz. 73, 415 (2001). arXiv:astro-ph/0104043

    Article  ADS  Google Scholar 

  25. Easther, R., Greene, B.R., Kinney, W.H., Shiu, G.: Inflation as a probe of short distance physics. Phys. Rev. D 64, 103502 (2001). doi:10.1103/PhysRevD.64.103502. arXiv:hep-th/0104102

    Article  ADS  MathSciNet  Google Scholar 

  26. Kaloper, N., Kleban, M., Lawrence, A.E., Shenker, S.: Signatures of short distance physics in the cosmic microwave background. Phys. Rev. D 66, 123510 (2002). doi:10.1103/PhysRevD.66.123510. arXiv:hep-th/0201158

    Article  ADS  Google Scholar 

  27. Brandenberger, R.H., Martin, J.: On signatures of short distance physics in the cosmic microwave background. Int. J. Mod. Phys. A 17, 3663 (2002). doi:10.1142/S0217751X02010765. arXiv:hep-th/0202142

  28. Brandenberger, R., Ho, P.M.: Noncommutative space-time, stringy space-time uncertainty principle, and density fluctuations, Phys. Rev. D 66, 023517 (2002) [AAPPS Bull. 12(1), 10 (2002)] doi:10.1103/PhysRevD.66.023517. arXiv:hep-th/0203119

  29. Danielsson, U.H.: A Note on inflation and transPlanckian physics. Phys. Rev. D 66, 023511 (2002). doi:10.1103/PhysRevD.66.023511. arXiv:hep-th/0203198

    Article  ADS  MathSciNet  Google Scholar 

  30. Danielsson, U.H.: Inflation, holography, and the choice of vacuum in de Sitter space. JHEP 0207, 040 (2002). doi:10.1088/1126-6708/2002/07/040. arXiv:hep-th/0205227

    Article  ADS  MathSciNet  Google Scholar 

  31. Starobinsky, A.A., Tkachev, I.I.: Trans-Planckian particle creation in cosmology and ultra-high energy cosmic rays, JETP Lett. 76, 235 (2002) [Pisma Zh. Eksp. Teor. Fiz. 76, 291 (2002)] doi:10.1134/1.1520612. arXiv:astro-ph/0207572

  32. Goldstein, K., Lowe, D.A.: A Note on alpha vacua and interacting field theory in de Sitter space. Nucl. Phys. B 669, 325 (2003). doi:10.1016/j.nuclphysb.2003.07.014. arXiv:hep-th/0302050

    Article  ADS  MATH  Google Scholar 

  33. Martin, J., Brandenberger, R.: On the dependence of the spectra of fluctuations in inflationary cosmology on transPlanckian physics. Phys. Rev. D 68, 063513 (2003). doi:10.1103/PhysRevD.68.063513. arXiv:hep-th/0305161

    Article  ADS  Google Scholar 

  34. Alberghi, G.L., Goldstein, K., Lowe, D.A.: Ultrahigh energy cosmic rays and de sitter vacua. Phys. Lett. B 578, 247 (2004). doi:10.1016/j.physletb.2003.10.088. arXiv:astro-ph/0307413

    Article  ADS  Google Scholar 

  35. Easther, R., Greene, B.R., Kinney, W.H., Shiu, G.: Imprints of short distance physics on inflationary cosmology. Phys. Rev. D 67, 063508 (2003). doi:10.1103/PhysRevD.67.063508. arXiv:hep-th/0110226

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Niemeyer, J.C., Parentani, R., Campo, D.: Minimal modifications of the primordial power spectrum from an adiabatic short distance cutoff. Phys. Rev. D 66, 083510 (2002). doi:10.1103/PhysRevD.66.083510. arXiv:hep-th/0206149

    Article  ADS  Google Scholar 

  37. Bozza, V., Giovannini, M., Veneziano, G.: Cosmological perturbations from a new physics hypersurface. JCAP 0305, 001 (2003). doi:10.1088/1475-7516/2003/05/001. arXiv:hep-th/0302184

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Brandenberger, R.H., Martin, J.: Trans-Planckian issues for inflationary cosmology. Class. Quant. Grav. 30, 113001 (2013). doi:10.1088/0264-9381/30/11/113001. arXiv:1211.6753

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Finelli, F., Brandenberger, R.: On the generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase. Phys. Rev. D 65, 103522 (2002). arXiv:hep-th/0112249

    Article  ADS  Google Scholar 

  40. Brandenberger R.H.: The matter bounce alternative to inflationary cosmology. arXiv:1206.4196

  41. Gasperini, M., Veneziano, G.: Pre-big bang in string cosmology. Astropart. Phys. 1, 317 (1992). doi:10.1016/0927-6505(93)90017-8. arXiv:hep-th/9211021

    Article  ADS  Google Scholar 

  42. Khoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N.: The Ekpyrotic universe: colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001). arXiv:hep-th/0103239

    Article  ADS  MathSciNet  Google Scholar 

  43. Brandenberger, R.H., Vafa, C.: Superstrings in the early universe. Nucl. Phys. B 316, 391 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  44. Nayeri, A., Brandenberger, R.H., Vafa, C.: Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology. Phys. Rev. Lett. 97, 021302 (2006). arXiv:hep-th/0511140

    Article  ADS  Google Scholar 

  45. Martin, J.: Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). C. R. Phys. 13, 566 (2012). arXiv:1205.3365

    Article  ADS  Google Scholar 

  46. Arkani-Hamed, N., Dimopoulos, S., Dvali, G., Gabadadze, G.: Nonlocal modification of gravity and the cosmological constant problem, arXiv:hep-th/0209227

  47. Dvali, G., Hofmann, S., Khoury, J.: Degravitation of the cosmological constant and graviton width. Phys. Rev. D 76, 084006 (2007). doi:10.1103/PhysRevD.76.084006. arXiv:hep-th/0703027

    Article  ADS  MathSciNet  Google Scholar 

  48. Patil, S.P.: Degravitation, inflation and the cosmological constant as an afterglow. JCAP 0901, 017 (2009). doi:10.1088/1475-7516/2009/01/017. arXiv:0801.2151

    Article  ADS  Google Scholar 

  49. Patil, S.P.: On Semi-classical degravitation and the cosmological constant problems, arXiv:1003.3010

  50. Sunyaev, R.A., Zeldovich, Y.B.: Small scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3 (1970)

    ADS  Google Scholar 

  51. Peebles, P.J.E., Yu, J.T.: Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815 (1970). doi:10.1086/150713

    Article  ADS  Google Scholar 

  52. Ijjas, A., Steinhardt, P.J., Loeb, A.: Inflationary paradigm in trouble after Planck2013. Phys. Lett. B 723, 261 (2013). doi:10.1016/j.physletb.2013.05.023. arXiv:1304.2785

    Article  ADS  Google Scholar 

  53. Mukhanov, V.: Inflation without Selfreproduction. Fortsch. Phys. 63, 36 (2015). doi:10.1002/prop.201400074. arXiv:1409.2335

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Brandenberger, R.H.: Is the spectrum of gravitational waves the ’Holy Grail’ of inflation? arXiv:1104.3581

  55. Brandenberger, R.H., Nayeri, A., Patil, S.P., Vafa, C.: String gas cosmology and structure formation. Int. J. Mod. Phys. A 22, 3621 (2007). arXiv:hep-th/0608121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Novello, M., Bergliaffa, S.E.P.: Bouncing cosmologies. Phys. Rep. 463, 127 (2008). doi:10.1016/j.physrep.2008.04.006. arXiv:0802.1634

    Article  ADS  MathSciNet  Google Scholar 

  57. Battefeld, D., Peter, P.: A critical review of classical bouncing colmologies. Phys. Rep. 571, 1 (2015). doi:10.1016/j.physrep.2014.12.004. arXiv:1406.2790

    Article  ADS  MathSciNet  Google Scholar 

  58. Lilley, M., Peter, P.: Bouncing alternatives to inflation. Comptes Rendus Phys. 16, 1038 (2015). doi:10.1016/j.crhy.2015.08.009. arXiv:1503.06578

    Article  ADS  Google Scholar 

  59. Peter, P., Uzan, J.P.: Primordial cosmology, Oxford University Press, Oxford (2013) ISBN: 978-0199665150

  60. Battefeld, T.J., Brandenberger, R.: Vector perturbations in a contracting universe. Phys. Rev. D 70, 121302 (2004). doi:10.1103/PhysRevD.70.121302. arXiv:hep-th/0406180

    Article  ADS  MathSciNet  Google Scholar 

  61. Sasaki, M.: Large scale quantum fluctuations in the inflationary universe. Prog. Theor. Phys. 76, 1036 (1986). doi:10.1143/PTP.76.1036

    Article  ADS  Google Scholar 

  62. Mukhanov, V.F.: Quantum theory of gauge invariant cosmological perturbations. Sov. Phys. JETP 67, 1297 (1988). Zh. Eksp. Teor. Fiz. 94N7, 1 (1988)

    MathSciNet  Google Scholar 

  63. Wands, D.: Duality invariance of cosmological perturbation spectra. Phys. Rev. D 60, 023507 (1999). arXiv:gr-qc/9809062

    Article  ADS  Google Scholar 

  64. Gordon, C., Wands, D., Bassett, B.A., Maartens, R.: Adiabatic and entropy perturbations from inflation. Phys. Rev. D 63, 023506 (2001). doi:10.1103/PhysRevD.63.023506. arXiv:astro-ph/0009131

    Article  ADS  Google Scholar 

  65. Malik, K.A., Wands, D.: Adiabatic and entropy perturbations with interacting fluids and fields. JCAP 0502, 007 (2005). doi:10.1088/1475-7516/2005/02/007. arXiv:astro-ph/0411703

    Article  ADS  Google Scholar 

  66. Li, C., Cheung, Y.K.E.: Dualities between scale invariant and magnitude invariant perturbation spectra in inflationary/bouncing cosmos, arXiv:1211.1610

  67. Cai, Y.F., Wilson-Ewing, E.: A \(\Lambda \)CDM bounce scenario. JCAP 1503(03), 006 (2015). doi:10.1088/1475-7516/2015/03/006. arXiv:1412.2914

    Article  ADS  Google Scholar 

  68. Cai, Y.F., Duplessis, F., Easson, D.A., Wang, D.G.: Searching for a matter bounce cosmology with low redshift observations. Phys. Rev. D 93(4), 043546 (2016). doi:10.1103/PhysRevD.93.043546. arXiv:1512.08979

    Article  ADS  Google Scholar 

  69. Cai, Y.F., Xue, W., Brandenberger, R., Zhang, X.M.: Thermal fluctuations and bouncing cosmologies. JCAP 0906, 037 (2009). doi:10.1088/1475-7516/2009/06/037. arXiv:0903.4938

    Article  ADS  Google Scholar 

  70. Gasperini, M., Veneziano, G.: The Pre - big bang scenario in string cosmology. Phys. Rep. 373, 1 (2003). doi:10.1016/S0370-1573(02)00389-7. arXiv:hep-th/0207130

    Article  ADS  MathSciNet  Google Scholar 

  71. Copeland, E.J., Easther, R., Wands, D.: Vacuum fluctuations in axion—dilaton cosmologies. Phys. Rev. D 56, 874 (1997). doi:10.1103/PhysRevD.56.874. arXiv:hep-th/9701082

    Article  ADS  Google Scholar 

  72. Copeland, E.J., Lidsey, J.E., Wands, D.: S duality invariant perturbations in string cosmology. Nucl. Phys. B 506, 407 (1997). doi:10.1016/S0550-3213(97)00538-5. arXiv:hep-th/9705050

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Horava, P., Witten, E.: Eleven-dimensional supergravity on a manifold with boundary. Nucl. Phys. B 475, 94 (1996). doi:10.1016/0550-3213(96)00308-2. arXiv:hep-th/9603142

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Horava, P., Witten, E.: Heterotic and type I string dynamics from eleven-dimensions. Nucl. Phys. B 460, 506 (1996). doi:10.1016/0550-3213(95)00621-4. arXiv:hep-th/9510209

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Notari, A., Riotto, A.: Isocurvature perturbations in the ekpyrotic universe. Nucl. Phys. B 644, 371 (2002). doi:10.1016/S0550-3213(02)00765-4. arXiv:hep-th/0205019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Finelli, E.: Assisted contraction. Phys. Lett. B 545, 1 (2002). doi:10.1016/S0370-2693(02)02554-6. arXiv:hep-th/0206112

    Article  ADS  Google Scholar 

  77. Di Marco, F., Finelli, F., Brandenberger, R.: Adiabatic and isocurvature perturbations for multifield generalized Einstein models. Phys. Rev. D 67, 063512 (2003). doi:10.1103/PhysRevD.67.063512. arXiv:astro-ph/0211276

    Article  ADS  Google Scholar 

  78. Lehners, J.L., McFadden, P., Turok, N., Steinhardt, P.J.: Generating ekpyrotic curvature perturbations before the big bang. Phys. Rev. D 76, 103501 (2007). doi:10.1103/PhysRevD.76.103501. arXiv:hep-th/0702153

    Article  ADS  MathSciNet  Google Scholar 

  79. Buchbinder, E.I., Khoury, J., Ovrut, B.A.: New Ekpyrotic cosmology. Phys. Rev. D 76, 123503 (2007). doi:10.1103/PhysRevD.76.123503. arXiv:hep-th/0702154

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Creminelli, P., Senatore, L.: A Smooth bouncing cosmology with scale invariant spectrum. JCAP 0711, 010 (2007). doi:10.1088/1475-7516/2007/11/010. arXiv:hep-th/0702165

    Article  ADS  Google Scholar 

  81. Israel, W.: Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44S10, 1 (1966) [Nuovo Cim. B 48, 463 (1967)] [Nuovo Cim. B 44, 1 (1966)]. doi:10.1007/BF02710419, 10.1007/BF02712210

  82. Hwang, J.C., Vishniac, E.T.: Gauge-invariant joining conditions for cosmological perturbations. Astrophys. J. 382, 363 (1991). doi:10.1086/170726

    Article  ADS  MathSciNet  Google Scholar 

  83. Deruelle, N., Mukhanov, V.F.: On matching conditions for cosmological perturbations. Phys. Rev. D 52, 5549 (1995). doi:10.1103/PhysRevD.52.5549. arXiv:gr-qc/9503050

    Article  ADS  Google Scholar 

  84. Martin, J., Peter, P., Pinto Neto, N., Schwarz, D.J.: Passing through the bounce in the ekpyrotic models. Phys. Rev. D 65, 123513 (2002). doi:10.1103/PhysRevD.65.123513. arXiv:hep-th/0112128

    Article  ADS  Google Scholar 

  85. Martin, J., Peter, P., Pinto-Neto, N., Schwarz, D.J.: Comment on’Density perturbations in the ekpyrotic scenario. Phys. Rev. D 67, 028301 (2003). doi:10.1103/PhysRevD.67.028301. arXiv:hep-th/0204222

    Article  ADS  MathSciNet  Google Scholar 

  86. Martin, J., Peter, P.: Parametric amplification of metric fluctuations through a bouncing phase. Phys. Rev. D 68, 103517 (2003). doi:10.1103/PhysRevD.68.103517. arXiv:hep-th/0307077

    Article  ADS  Google Scholar 

  87. Martin, J., Peter, P.: On the properties of the transition matrix in bouncing cosmologies. Phys. Rev. D 69, 107301 (2004). doi:10.1103/PhysRevD.69.107301. arXiv:hep-th/0403173

    Article  ADS  Google Scholar 

  88. Falciano, F.T., Lilley, M., Peter, P.: A classical bounce: constraints and consequences. Phys. Rev. D 77, 083513 (2008). doi:10.1103/PhysRevD.77.083513. arXiv:0802.1196

    Article  ADS  Google Scholar 

  89. Durrer, R., Vernizzi, E.: Adiabatic perturbations in pre-big bang models: matching conditions and scale invariance. Phys. Rev. D 66, 083503 (2002). doi:10.1103/PhysRevD.66.083503. arXiv:hep-ph/0203275

    Article  ADS  Google Scholar 

  90. Cartier, C., Durrer, R., Copeland, E.J.: Cosmological perturbations and the transition from contraction to expansion. Phys. Rev. D 67, 103517 (2003). doi:10.1103/PhysRevD.67.103517. arXiv:hep-th/0301198

    Article  ADS  Google Scholar 

  91. Tsujikawa, S., Brandenberger, R., Finelli, F.: On the construction of nonsingular pre-big bang and ekpyrotic cosmologies and the resulting density perturbations. Phys. Rev. D 66, 083513 (2002). doi:10.1103/PhysRevD.66.083513. arXiv:hep-th/0207228

    Article  ADS  Google Scholar 

  92. Gordon, C., Turok, N.: Cosmological perturbations through a general relativistic bounce. Phys. Rev. D 67, 123508 (2003). doi:10.1103/PhysRevD.67.123508. arXiv:hep-th/0206138

    Article  ADS  MathSciNet  Google Scholar 

  93. Tolley, A.J., Turok, N.: Quantum fields in a big crunch / big bang space-time. Phys. Rev. D 66, 106005 (2002). doi:10.1103/PhysRevD.66.106005. arXiv:hep-th/0204091

    Article  ADS  MathSciNet  Google Scholar 

  94. Hwang, J.C., Noh, H.: Nonsingular big bounces and evolution of linear fluctuations. Phys. Rev. D 65, 124010 (2002). doi:10.1103/PhysRevD.65.124010. arXiv:astro-ph/0112079

    Article  ADS  Google Scholar 

  95. Lyth, D.H.: The Primordial curvature perturbation in the ekpyrotic universe. Phys. Lett. B 524, 1 (2002). doi:10.1016/S0370-2693(01)01374-0. arXiv:hep-ph/0106153

    Article  ADS  MATH  Google Scholar 

  96. Brandenberger, R., Finelli, F.: On the spectrum of fluctuations in an effective field theory of the Ekpyrotic universe. JHEP 0111, 056 (2001). doi:10.1088/1126-6708/2001/11/056. arXiv:hep-th/0109004

    Article  ADS  MathSciNet  Google Scholar 

  97. Khoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N.: Density perturbations in the ekpyrotic scenario. Phys. Rev. D 66, 046005 (2002). doi:10.1103/PhysRevD.66.046005. arXiv:hep-th/0109050

    Article  ADS  MathSciNet  Google Scholar 

  98. Battefeld, T.J., Patil, S.P., Brandenberger, R.H.: On the transfer of metric fluctuations when extra dimensions bounce or stabilize. Phys. Rev. D 73, 086002 (2006). doi:10.1103/PhysRevD.73.086002. arXiv:hep-th/0509043

    Article  ADS  Google Scholar 

  99. Khoury, J., Steinhardt, P.J.: Adiabatic ekpyrosis: scale-invariant curvature perturbations from a single scalar field in a contracting universe. Phys. Rev. Lett. 104, 091301 (2010). doi:10.1103/PhysRevLett.104.091301. arXiv:0910.2230

    Article  ADS  Google Scholar 

  100. Khoury, J., Steinhardt, P.J.: Generating scale-invariant perturbations from rapidly-evolving equation of state. Phys. Rev. D 83, 123502 (2011). doi:10.1103/PhysRevD.83.123502. arXiv:1101.3548

    Article  ADS  Google Scholar 

  101. Ijjas, A., Lehners, J.L., Steinhardt, P.J.: General mechanism for producing scale-invariant perturbations and small non-Gaussianity in ekpyrotic models. Phys. Rev. D 89(12), 123520 (2014). doi:10.1103/PhysRevD.89.123520. arXiv:1404.1265

    Article  ADS  Google Scholar 

  102. Levy, A.M., Ijjas, A., Steinhardt, P.J.: Scale-invariant perturbations in ekpyrotic cosmologies without fine-tuning of initial conditions. Phys. Rev. D 92(6), 063524 (2015). doi:10.1103/PhysRevD.92.063524. arXiv:1506.01011

    Article  ADS  Google Scholar 

  103. Ijjas, A., Steinhardt, P.J.: The anamorphic universe. JCAP 1510(10), 001 (2015). doi:10.1088/1475-7516/2015/10/001. arXiv:1507.03875

    Article  ADS  MathSciNet  Google Scholar 

  104. Moffat, J.W.: Superluminary universe: a possible solution to the initial value problem in cosmology. Int. J. Mod. Phys. D 2, 351 (1993). doi:10.1142/S0218271893000246. arXiv:gr-qc/9211020

    Article  ADS  MATH  Google Scholar 

  105. Albrecht, A., Magueijo, J.: A time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 59, 043516 (1999). doi:10.1103/PhysRevD.59.043516. arXiv:astro-ph/9811018

    Article  ADS  Google Scholar 

  106. Fertig, A., Lehners, J.L., Mallwitz, E.: Conflation: a new type of accelerated expansion. JCAP 1608(08), 073 (2016). doi:10.1088/1475-7516/2016/08/073. arXiv:1507.04742

    Article  ADS  MathSciNet  Google Scholar 

  107. Hagedorn, R.: Statistical thermodynamics of strong interactions at high-energies. Nuovo Cim. Suppl. 3, 147 (1965)

    Google Scholar 

  108. Polchinski, J.: String Theory, vol. 1, 2. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  109. Sakellariadou, M.: Numerical experiments in string cosmology. Nucl. Phys. B 468, 319 (1996). arXiv:hep-th/9511075

    Article  ADS  Google Scholar 

  110. Easther, R., Greene, B.R., Jackson, M.G.: Cosmological string gas on orbifolds. Phys. Rev. D 66, 023502 (2002). arXiv:hep-th/0204099

    Article  ADS  MathSciNet  Google Scholar 

  111. Easther, R., Greene, B.R., Jackson, M.G., Kabat, D.N.: String windings in the early universe. JCAP 0502, 009 (2005). doi:10.1088/1475-7516/2005/02/009. arXiv:hep-th/0409121

    ADS  MathSciNet  Google Scholar 

  112. Greene, B., Kabat, D., Marnerides, S.: Phys. Rev. D 82, 043528 (2010). doi:10.1103/PhysRevD.82.043528. arXiv:0908.0955

    Article  ADS  Google Scholar 

  113. Greene, B., Kabat, D., Marnerides, S.: On three dimensions as the preferred dimensionality of space via the Brandenberger-Vafa mechanism. Phys. Rev. D 88, 043527 (2013). doi:10.1103/PhysRevD.88.043527. arXiv:1212.2115

    Article  ADS  Google Scholar 

  114. Danos, R., Frey, A.R., Mazumdar, A.: Interaction rates in string gas cosmology. Phys. Rev. D 70, 106010 (2004). arXiv:hep-th/0409162

    Article  ADS  Google Scholar 

  115. Watson, S., Brandenberger, R.: Stabilization of extra dimensions at tree level. JCAP 0311, 008 (2003). arXiv:hep-th/0307044

    Article  ADS  Google Scholar 

  116. Patil, S.P., Brandenberger, R.: Radion stabilization by stringy effects in general relativity and dilaton gravity. Phys. Rev. D 71, 103522 (2005). arXiv:hep-th/0401037

    Article  ADS  Google Scholar 

  117. Patil, S.P., Brandenberger, R.H.: The cosmology of massless string modes. JCAP 0601, 005 (2006). doi:10.1088/1475-7516/2006/01/005

  118. Watson, S.: Moduli stabilization with the string Higgs effect. Phys. Rev. D 70, 066005 (2004). arXiv:hep-th/0404177

    Article  ADS  Google Scholar 

  119. Watson, S.: Stabilizing moduli with string cosmology, arXiv:hep-th/0409281

  120. Kaya, A.: On winding branes and cosmological evolution of extra dimensions in string theory. Class. Quant. Grav. 20, 4533 (2003). arXiv:hep-th/0302118

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Kaya, A., Rador, T.: Wrapped branes and compact extra dimensions in cosmology. Phys. Lett. B 565, 19 (2003). arXiv:hep-th/0301031

    Article  ADS  MATH  Google Scholar 

  122. Brandenberger, R., Cheung, Y.K., Watson, S.: Moduli stabilization with string gases and fluxes. JHEP 0605, 025 (2006). arXiv:hep-th/0501032

    Google Scholar 

  123. Kaya, A.: Brane gases and stabilization of shape moduli with momentum and winding stress. Phys. Rev. D 72, 066006 (2005). arXiv:hep-th/0504208

    Article  ADS  Google Scholar 

  124. Danos, R.J., Frey, A.R., Brandenberger, R.H.: Stabilizing moduli with thermal matter and nonperturbative effects. Phys. Rev. D 77, 126009 (2008). arXiv:0802.1557

    Article  ADS  Google Scholar 

  125. Mishra, S., Xue, W., Brandenberger, R., Yajnik, U.: Supersymmetry breaking and dilaton stabilization in string gas cosmology. JCAP 1209, 015 (2012). doi:10.1088/1475-7516/2012/09/015. arXiv:1103.1389

    Article  ADS  Google Scholar 

  126. Brandenberger, R.H.: String gas cosmology: progress and problems. Class. Quant. Grav. 28, 204005 (2011). doi:10.1088/0264-9381/28/20/204005. arXiv:1105.3247

    Article  ADS  MathSciNet  MATH  Google Scholar 

  127. Brandenberger, R.H.: String gas cosmology. In: Erdmenger, J. (ed.) String Cosmology, pp. 193–230. Wiley, New York (2009). arXiv:0808.0746

    Chapter  Google Scholar 

  128. Brandenberger, R.H., Nayeri, A., Patil, S.P., Vafa, C.: String gas cosmology and structure formation. Int. J. Mod. Phys. A 22, 3621 (2007). arXiv:hep-th/0608121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  129. Battefeld, T., Watson, S.: String gas cosmology. Rev. Mod. Phys. 78, 435 (2006). arXiv:hep-th/0510022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  130. Deo, N., Jain, S., Narayan, O., Tan, C.I.: The effect of topology on the thermodynamic limit for a string gas. Phys. Rev. D 45, 3641 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  131. Nayeri, A.: Inflation free, stringy generation of scale-invariant cosmological fluctuations in D = 3 + 1 dimensions, arXiv:hep-th/0607073

  132. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory, vol. 1, 2. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  133. Peter, P., Pinto-Neto, N.: Primordial perturbations in a non singular bouncing universe model. Phys. Rev. D 66, 063509 (2002). doi:10.1103/PhysRevD.66.063509. arXiv:hep-th/0203013

    Article  ADS  Google Scholar 

  134. Cline, J.M., Jeon, S., Moore, G.D.: The Phantom menaced: constraints on low-energy effective ghosts. Phys. Rev. D 70, 043543 (2004). doi:10.1103/PhysRevD.70.043543. arXiv:hep-ph/0311312

    Article  ADS  Google Scholar 

  135. Adams, A., Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Rattazzi, R.: Causality, analyticity and an IR obstruction to UV completion. JHEP 0610, 014 (2006). doi:10.1088/1126-6708/2006/10/014. arXiv:hep-th/0602178

    Article  ADS  MathSciNet  Google Scholar 

  136. Cai, Y.F., Qiu, T., Piao, Y.S., Li, M., Zhang, X.: Bouncing universe with quintom matter. JHEP 0710, 071 (2007). doi:10.1088/1126-6708/2007/10/071. arXiv:0704.1090

    Article  ADS  Google Scholar 

  137. Cai, Y.F., Qiu, T., Brandenberger, R., Piao, Y.S., Zhang, X.: On perturbations of quintom bounce. JCAP 0803, 013 (2008). doi:10.1088/1475-7516/2008/03/013. arXiv:0711.2187

    Article  ADS  Google Scholar 

  138. Cai, Y.F., Zhang, X.: Evolution of metric perturbations in quintom bounce model. JCAP 0906, 003 (2009). doi:10.1088/1475-7516/2009/06/003. arXiv:0808.2551

    Article  ADS  Google Scholar 

  139. Parker, L., Fulling, S.A.: Quantized matter fields and the avoidance of singularities in general relativity. Phys. Rev. D 7, 2357 (1973). doi:10.1103/PhysRevD.7.2357

    Article  ADS  Google Scholar 

  140. Lee, T.D., Wick, G.C.: Negative metric and the unitarity of the S matrix. Nucl. Phys. B 9, 209 (1969)

    Article  ADS  MATH  Google Scholar 

  141. Lee, T.D., Wick, G.C.: Finite theory of quantum electrodynamics. Phys. Rev. D 2, 1033 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  142. Cai, Y.F., Qiu, T.T., Brandenberger, R., Zhang, X.M.: A nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory. Phys. Rev. D 80, 023511 (2009). doi:10.1103/PhysRevD.80.023511. arXiv:0810.4677

    Article  ADS  Google Scholar 

  143. Bars, I., Chen, S.H., Steinhardt, P.J., Turok, N.: Antigravity and the big crunch/big bang transition. Phys. Lett. B 715, 278 (2012). doi:10.1016/j.physletb.2012.07.071. arXiv:1112.2470

    Article  ADS  Google Scholar 

  144. Bars, I., Steinhardt, P., Turok, N.: Local conformal symmetry in physics and cosmology. Phys. Rev. D 89(4), 043515 (2014). doi:10.1103/PhysRevD.89.043515. arXiv:1307.1848

    Article  ADS  Google Scholar 

  145. Bars, I., Steinhardt, P., Turok, N.: Sailing through the big crunch-big bang transition. Phys. Rev. D 89(6), 061302 (2014). doi:10.1103/PhysRevD.89.061302. arXiv:1312.0739

    Article  ADS  Google Scholar 

  146. Gielen, S., Turok, N.: A perfect bounce. Phys. Rev. Lett. 117, 021301 (2016). doi:10.1103/physrevlett.117.021301. arXiv:1510.00699

  147. Arkani-Hamed, N., Cheng, H.C., Luty, M.A., Mukohyama, S.: Ghost condensation and a consistent infrared modification of gravity. JHEP 0405, 074 (2004). doi:10.1088/1126-6708/2004/05/074. arXiv:hep-th/0312099

    Article  MathSciNet  Google Scholar 

  148. Abramo, L.R., Peter, P.: K-bounce. JCAP 0709, 001 (2007). doi:10.1088/1475-7516/2007/09/001. arXiv:0705.2893

    Article  ADS  Google Scholar 

  149. Lin, C., Brandenberger, R.H., Perreault Levasseur, L.: A matter bounce by means of ghost condensation. JCAP 1104, 019 (2011). doi:10.1088/1475-7516/2011/04/019. arXiv:1007.2654

    Article  ADS  Google Scholar 

  150. Nicolis, A., Rattazzi, R., Trincherini, E.: The Galileon as a local modification of gravity. Phys. Rev. D 79, 064036 (2009). doi:10.1103/PhysRevD.79.064036. arXiv:0811.2197

    Article  ADS  MathSciNet  Google Scholar 

  151. Qiu, T., Evslin, J., Cai, Y.F., Li, M., Zhang, X.: Bouncing Galileon cosmologies. JCAP 1110, 036 (2011). doi:10.1088/1475-7516/2011/10/036. arXiv:1108.0593

    Article  ADS  Google Scholar 

  152. Easson, D.A., Sawicki, I., Vikman, A.: G-bounce. JCAP 1111, 021 (2011). doi:10.1088/1475-7516/2011/11/021. arXiv:1109.1047

    Article  ADS  Google Scholar 

  153. Cai, Y.F., Easson, D.A., Brandenberger, R.: Towards a nonsingular bouncing cosmology. JCAP 1208, 020 (2012). doi:10.1088/1475-7516/2012/08/020. arXiv:1206.2382

    Article  ADS  Google Scholar 

  154. Cai, Y.F., McDonough, E., Duplessis, F., Brandenberger, R.H.: Two field matter bounce cosmology. JCAP 1310, 024 (2013). doi:10.1088/1475-7516/2013/10/024. arXiv:1305.5259

    Article  ADS  MathSciNet  Google Scholar 

  155. Ijjas, A., Steinhardt, P.J.: Classically stable non-singular cosmological bounces. Phys. Rev. Lett. 117(12), 121304 (2016). doi:10.1103/PhysRevLett.117.121304. arXiv:1606.08880

    Article  ADS  Google Scholar 

  156. Libanov, M., Mironov, S., Rubakov, V.: Generalized Galileons: instabilities of bouncing and genesis cosmologies and modified genesis. JCAP 1608(08), 037 (2016). doi:10.1088/1475-7516/2016/08/037. arXiv:1605.05992

    Article  ADS  MathSciNet  Google Scholar 

  157. Kobayashi, T.: Generic instabilities of nonsingular cosmologies in Horndeski theory: a no-go theorem. Phys. Rev. D 94(4), 043511 (2016). doi:10.1103/PhysRevD.94.043511. arXiv:1606.05831

    Article  ADS  Google Scholar 

  158. Ijjas, A., Steinhardt, P.J.: Fully stable cosmological solutions with a non-singular classical bounce, arXiv:1609.01253

  159. Alexander, S., Bambi, C., Marciano, A., Modesto, L.: Fermi-bounce Cosmology and scale invariant power-spectrum. Phys. Rev. D 90(12), 123510 (2014). doi:10.1103/PhysRevD.90.123510. arXiv:1402.5880

    Article  ADS  Google Scholar 

  160. Li, C., Cheung, Y.K.E.: The scale invariant power spectrum of the primordial curvature perturbations from the coupled scalar tachyon bounce cosmos. JCAP 1407, 008 (2014). doi:10.1088/1475-7516/2014/07/008. arXiv:1401.0094

    Article  ADS  MathSciNet  Google Scholar 

  161. Brandenberger, R.H., Cai, Y.F., Wan, Y., Zhang, X.: Nonsingular cosmology from an unstable higgs field, arXiv:1506.06770

  162. Biswas, T., Mazumdar, A., Siegel, W.: Bouncing universes in string-inspired gravity. JCAP 0603, 009 (2006). doi:10.1088/1475-7516/2006/03/009. arXiv:hep-th/0508194

    Article  ADS  MathSciNet  MATH  Google Scholar 

  163. Biswas, T., Brandenberger, R., Mazumdar, A., Siegel, W.: Non-perturbative gravity, Hagedorn bounce & CMB. JCAP 0712, 011 (2007). doi:10.1088/1475-7516/2007/12/011. arXiv:hep-th/0610274

    Article  ADS  Google Scholar 

  164. Koshelev, A.S.: Stable analytic bounce in non-local Einstein-Gauss-Bonnet cosmology. Class. Quant. Grav. 30, 155001 (2013). doi:10.1088/0264-9381/30/15/155001. arXiv:1302.2140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  165. Horava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). doi:10.1103/PhysRevD.79.084008. arXiv:0901.3775

    Article  ADS  MathSciNet  Google Scholar 

  166. Brandenberger, R.: Matter bounce in Horava-Lifshitz cosmology. Phys. Rev. D 80, 043516 (2009). doi:10.1103/PhysRevD.80.043516. arXiv:0904.2835

    Article  ADS  MathSciNet  Google Scholar 

  167. Mukohyama, S., Nakayama, K., Takahashi, F., Yokoyama, S.: Phenomenological aspects of Horava-Lifshitz cosmology. Phys. Lett. B 679, 6 (2009). doi:10.1016/j.physletb.2009.07.005. arXiv:0905.0055

    Article  ADS  Google Scholar 

  168. Ferreira, E.G.M., Brandenberger, R.: The trans-Planckian problem in the healthy extension of Horava-Lifshitz gravity. Phys. Rev. D 86, 043514 (2012). doi:10.1103/PhysRevD.86.043514. arXiv:1204.5239

    Article  ADS  Google Scholar 

  169. Gao, X., Wang, Y., Brandenberger, R., Riotto, A.: Cosmological perturbations in Horava-Lifshitz gravity. Phys. Rev. D 81, 083508 (2010). doi:10.1103/PhysRevD.81.083508. arXiv:0905.3821

    Article  ADS  Google Scholar 

  170. Piao, Y.S.: Primordial perturbation in Horava-Lifshitz cosmology. Phys. Lett. B 681, 1 (2009). doi:10.1016/j.physletb.2009.09.047. arXiv:0904.4117

    Article  ADS  Google Scholar 

  171. Gao, X., Wang, Y., Xue, W., Brandenberger, R.: Fluctuations in a Horava-Lifshitz bouncing cosmology. JCAP 1002, 020 (2010). doi:10.1088/1475-7516/2010/02/020. arXiv:0911.3196

    Article  ADS  Google Scholar 

  172. Blas, D., Pujolas, O., Sibiryakov, S.: Models of non-relativistic quantum gravity: the good, the bad and the healthy. JHEP 1104, 018 (2011). doi:10.1007/JHEP04(2011)018. arXiv:1007.3503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. Cerioni, A., Brandenberger, R.H.: Cosmological Perturbations in the ’Healthy Extension’ of Horava-Lifshitz gravity, arXiv:1008.3589

  174. Cerioni, A., Brandenberger, R.H.: Cosmological perturbations in the projectable version of Horava-Lifshitz gravity. JCAP 1108, 015 (2011). doi:10.1088/1475-7516/2011/08/015. arXiv:1007.1006

    Article  ADS  Google Scholar 

  175. Bamba, K., Makarenko, A.N., Myagky, A.N., Nojiri, S., Odintsov, S.D.: Bounce cosmology from \(F(R)\) gravity and \(F(R)\) bigravity. JCAP 1401, 008 (2014). doi:10.1088/1475-7516/2014/01/008. arXiv:1309.3748

    Article  ADS  MathSciNet  Google Scholar 

  176. Bamba, K., Makarenko, A.N., Myagky, A.N., Odintsov, S.D.: Bouncing cosmology in modified Gauss-Bonnet gravity. Phys. Lett. B 732, 349 (2014). doi:10.1016/j.physletb.2014.04.004. arXiv:1403.3242

    Article  ADS  MathSciNet  MATH  Google Scholar 

  177. Oikonomou, V.K.: Phys. Rev. D 92(12), 124027 (2015). doi:10.1103/PhysRevD.92.124027. arXiv:1509.05827

  178. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: The bounce universe history from unimodular \(F(R)\) gravity, arXiv:1601.04112

  179. Bamba, K., Makarenko, A.N., Myagky, A.N., Odintsov, S.D.: Bounce universe from string-inspired Gauss-Bonnet gravity. JCAP 04, 001 (2015). doi:10.1088/1475-7516/2015/04/001. arXiv:1411.3852

    Article  ADS  MathSciNet  Google Scholar 

  180. Haro, J., Makarenko, A.N., Odintsov, S.D., Oikonomou, V.K.: Bouncing loop quantum cosmology in Gauss-Bonnet gravity. Phys. Rev. D 92(12), 124026 (2015). arXiv:1506.08273

    Article  ADS  MathSciNet  Google Scholar 

  181. Cai, Y.F., Chen, S.H., Dent, J.B., Dutta, S., Saridakis, E.N.: Matter bounce cosmology with the f(T) gravity. Class. Quant. Grav. 28, 215011 (2011). doi:10.1088/0264-9381/28/21/215011. arXiv:1104.4349

    Article  ADS  MathSciNet  MATH  Google Scholar 

  182. Desai, S., Poplawski, N.J.: Non-parametric reconstruction of an inflaton potential from Einstein-Cartan-Sciama-Kibble gravity with particle production. Phys. Lett. B 755, 183 (2016). doi:10.1016/j.physletb.2016.02.014. arXiv:1510.08834

    Article  ADS  Google Scholar 

  183. Kehagias, A., Kiritsis, E.: Mirage cosmology. JHEP 9911, 022 (1999). doi:10.1088/1126-6708/1999/11/022. arXiv:hep-th/9910174

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. Brandenberger, R., Firouzjahi, H., Saremi, O.: Cosmological perturbations on a bouncing brane. JCAP 0711, 028 (2007). doi:10.1088/1475-7516/2007/11/028. arXiv:0707.4181

    Article  ADS  Google Scholar 

  185. Shtanov, Y., Sahni, V.: Bouncing brane worlds. Phys. Lett. B 557, 1 (2003). doi:10.1016/S0370-2693(03)00179-5. arXiv:gr-qc/0208047

    Article  ADS  MATH  Google Scholar 

  186. Brandenberger, R.H., Mukhanov, V.F., Sornborger, A.: A cosmological theory without singularities. Phys. Rev. D 48, 1629 (1993). doi:10.1103/PhysRevD.48.1629. arXiv:gr-qc/9303001

    Article  ADS  MathSciNet  Google Scholar 

  187. Boisseau, B., Giacomini, H., Polarski, D., Starobinsky, A.A.: Bouncing universes in scalar-tensor gravity models admitting negative potentials. JCAP 1507, 002 (2015). doi:10.1088/1475-7516/2015/07/002. arXiv:1504.07927

    Article  ADS  MathSciNet  Google Scholar 

  188. Boisseau, B., Giacomini, H., Polarski, D.: Scalar field cosmologies with inverted potentials. JCAP 1510, 033 (2015). doi:10.1088/1475-7516/2015/10/033. arXiv:1507.00792

    Article  ADS  MathSciNet  Google Scholar 

  189. Kounnas, C., Partouche, H., Toumbas, N.: S-brane to thermal non-singular string cosmology. Class. Quant. Grav. 29, 095014 (2012). arXiv:1111.5816

    Article  ADS  MathSciNet  MATH  Google Scholar 

  190. Angelantonj, C., Kounnas, C., Partouche, H., Toumbas, N.: Resolution of Hagedorn singularity in superstrings with gravito-magnetic fluxes. Nucl. Phys. B 809, 291 (2009). doi:10.1016/j.nuclphysb.2008.10.010. arXiv:0808.1357

    Article  ADS  MathSciNet  MATH  Google Scholar 

  191. Kounnas, C., Partouche, H., Toumbas, N.: Thermal duality and non-singular cosmology in d-dimensional superstrings. Nucl. Phys. B 855, 280 (2012). arXiv:1106.0946

    Article  ADS  MathSciNet  MATH  Google Scholar 

  192. Gutperle, M., Strominger, A.: Space-like branes. JHEP 0204, 018 (2002). doi:10.1088/1126-6708/2002/04/018. arXiv:hep-th/0202210

    Article  ADS  Google Scholar 

  193. Brandenberger, R.H., Kounnas, C., Partouche, H., Patil, S.P., Toumbas, N.: Cosmological perturbations across an S-brane. JCAP 1403, 015 (2014). arXiv:1312.2524

    Article  ADS  Google Scholar 

  194. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]. arXiv:hep-th/9711200

  195. Turok, N., Craps, B., Hertog, T.: From big crunch to big bang with AdS/CFT, arXiv:0711.1824

  196. Craps, B., Hertog, T., Turok, N.: On the quantum resolution of cosmological singularities using AdS/CFT. Phys. Rev. D 86, 043513 (2012). arXiv:0712.4180

    Article  ADS  Google Scholar 

  197. Hertog, T., Horowitz, G.T.: Holographic description of AdS cosmologies. JHEP 0504, 005 (2005). arXiv:hep-th/0503071

    Article  ADS  MathSciNet  Google Scholar 

  198. Brandenberger, R.H., Cai, Y.F., Das, S.R., Ferreira, E.G.M., Morrison, I.A., Wang, Y.: Fluctuations in a cosmology with a space-like singularity and their gauge theory dual description. Phys. Rev. D 94(8), 083508 (2016). doi:10.1103/PhysRevD.94.083508. arXiv:1601.00231

  199. Ferreira, E.G.M., Brandenberger, R.: Holographic curvature perturbations in a cosmology with a space-like singularity. JCAP 1607(7), 030 (2016). doi:10.1088/1475-7516/2016/07/030. arXiv:1602.08152

  200. Das, S.R., Michelson, J., Narayan, K., Trivedi, S.P.: Time dependent cosmologies and their duals. Phys. Rev. D 74, 026002 (2006). arXiv:hep-th/0602107

    Article  ADS  MathSciNet  Google Scholar 

  201. Awad, A., Das, S.R., Narayan, K., Trivedi, S.P.: Gauge theory duals of cosmological backgrounds and their energy momentum tensors. Phys. Rev. D 77, 046008 (2008). arXiv:0711.2994

    Article  ADS  MathSciNet  Google Scholar 

  202. Chu, C.S., Ho, P.M.: Time-dependent AdS/CFT duality and null singularity. JHEP 0604, 013 (2006). arXiv:hep-th/0602054

    ADS  MathSciNet  Google Scholar 

  203. Chu, C.S., Ho, P.M.: Time-dependent AdS/CFT duality. II. Holographic reconstruction of bulk metric and possible resolution of singularity. JHEP 0802, 058 (2008). arXiv:0710.2640

    Article  ADS  MathSciNet  Google Scholar 

  204. Cornalba, L., Costa, M.S.: A new cosmological scenario in string theory. Phys. Rev. D 66, 066001 (2002). doi:10.1103/PhysRevD.66.066001. arXiv:hep-th/0203031

    Article  ADS  MathSciNet  Google Scholar 

  205. Cornalba, L., Costa, M.S.: Time dependent orbifolds and string cosmology. Fortsch. Phys. 52, 145 (2004). doi:10.1002/prop.200310123. arXiv:hep-th/0310099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  206. Cheung, Y.K.E., Song, X., Li, S., Li, Y., Zhu, Y.: The CST Bounce Universe model—a parametric study. arXiv:1601.03807

  207. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983). doi:10.1103/PhysRevD.28.2960

    Article  ADS  MathSciNet  Google Scholar 

  208. Vilenkin, A.: The birth of inflationary universes. Phys. Rev. D 27, 2848 (1983). doi:10.1103/PhysRevD.27.2848

    Article  ADS  MathSciNet  Google Scholar 

  209. Linde, A.D.: Quantum creation of the inflationary universe. Lett. Nuovo Cim. 39, 401 (1984). doi:10.1007/BF02790571

    Article  ADS  Google Scholar 

  210. Gielen, S., Sindoni, L.: Quantum cosmology from group field theory condensates: a review. SIGMA 12, 082 (2016). doi:10.3842/SIGMA.2016.082. arXiv:1602.08104

    MathSciNet  MATH  Google Scholar 

  211. Gielen, S., Oriti, D., Sindoni, L.: Cosmology from group field theory formalism for quantum gravity. Phys. Rev. Lett. 111(3), 031301 (2013). doi:10.1103/PhysRevLett.111.031301. arXiv:1303.3576

    Article  ADS  Google Scholar 

  212. Bojowald, M.: Loop quantum cosmology. Living Rev. Rel. 11, 4 (2008)

    Article  MATH  Google Scholar 

  213. Ashtekar, A.: Singularity resolution in loop quantum cosmology: a brief overview. J. Phys. Conf. Ser. 189, 012003 (2009). doi:10.1088/1742-6596/189/1/012003. arXiv:0812.4703

    Article  Google Scholar 

  214. Ashtekar, A., Barrau, A.: Loop quantum cosmology: from pre-inflationary dynamics to observations. Class. Quant. Grav. 32(23), 234001 (2015). doi:10.1088/0264-9381/32/23/234001. arXiv:1504.07559

    Article  ADS  MATH  Google Scholar 

  215. Wilson-Ewing, E.: The matter bounce scenario in loop quantum cosmology. JCAP 1303, 026 (2013). doi:10.1088/1475-7516/2013/03/026. arXiv:1211.6269

    Article  ADS  MathSciNet  Google Scholar 

  216. Cai, Y.F., Wilson-Ewing, E.: Non-singular bounce scenarios in loop quantum cosmology and the effective field description. JCAP 1403, 026 (2014). doi:10.1088/1475-7516/2014/03/026. arXiv:1402.3009

    Article  ADS  MathSciNet  Google Scholar 

  217. de Cesare, M., Sakellariadou, M.: Accelerated expansion of the Universe without an inflaton and resolution of the initial singularity from GFT condensates. Phys. Lett. B 764, 49 (2017). doi:10.1016/j.physletb.2016.10.051.arXiv:1603.01764

  218. Peter, P., Vitenti, S.D.P.: The simplest possible bouncing quantum cosmological model. Mod. Phys. Lett. A 31(21), 1640006 (2016). doi:10.1142/S021773231640006X. arXiv:1603.02342

    Article  ADS  MathSciNet  MATH  Google Scholar 

  219. Chowdhury, D., Sreenath, V., Sriramkumar, L.: The tensor bi-spectrum in a matter bounce. JCAP 1511, 002 (2015). doi:10.1088/1475-7516/2015/11/002. arXiv:1506.06475

    Article  ADS  MathSciNet  Google Scholar 

  220. Maldacena, J.M.: Non-Gaussian features of primordial fluctuations in single field inflationary models. JHEP 0305, 013 (2003). doi:10.1088/1126-6708/2003/05/013. arXiv:astro-ph/0210603

    Article  ADS  MathSciNet  Google Scholar 

  221. Babich, D., Creminelli, P., Zaldarriaga, M.: The shape of non-Gaussianities. JCAP 0408, 009 (2004). doi:10.1088/1475-7516/2004/08/009. arXiv:astro-ph/0405356

    Article  ADS  Google Scholar 

  222. Baumann, D.: Inflation, arXiv:0907.5424

  223. Battefeld, T., Grieb, J.: Anatomy of bispectra in general single-field inflation—modal expansions. JCAP 1112, 003 (2011). doi:10.1088/1475-7516/2011/12/003. arXiv:1110.1369

    Article  ADS  Google Scholar 

  224. Ade, P.A.R. et al.: Planck Collaboration, Planck 2015 results. vol. XVII. Constraints on primordial non-Gaussianity. Astron. Astrophys. 594, A17 (2016). doi:10.1051/0004-6361/201525836. arXiv:1502.01592

  225. Creminelli, P.: On non-Gaussianities in single-field inflation. JCAP 0310, 003 (2003). doi:10.1088/1475-7516/2003/10/003. arXiv:astro-ph/0306122

    Article  ADS  MathSciNet  Google Scholar 

  226. Cai, Y.F., Xue, W., Brandenberger, R., Zhang, X.: Non-Gaussianity in a matter bounce. JCAP 0905, 011 (2009). doi:10.1088/1475-7516/2009/05/011. arXiv:0903.0631

    Article  ADS  Google Scholar 

  227. Lehners, J.L., Steinhardt, P.J.: Non-Gaussian density fluctuations from entropically generated curvature perturbations in Ekpyrotic models, Phys. Rev. D 77, 063533 (2008) Erratum: Phys. Rev. D 79, 129903 (2009) doi:10.1103/PhysRevD.79.129903, 10.1103/PhysRevD.77.063533. arXiv:0712.3779

  228. Lehners, J.L., Steinhardt, P.J.: Intuitive understanding of non-gaussianity in ekpyrotic and cyclic models, Phys. Rev. D 78, 023506 (2008) Erratum: Phys. Rev. D 79, 129902 (2009) doi:10.1103/PhysRevD.78.023506, 10.1103/PhysRevD.79.129902. arXiv:0804.1293

  229. Lehners, J.L., Steinhardt, P.J.: Non-Gaussianity generated by the entropic mechanism in bouncing cosmologies made simple. Phys. Rev. D 80, 103520 (2009). doi:10.1103/PhysRevD.80.103520. arXiv:0909.2558

    Article  ADS  Google Scholar 

  230. Qiu, T., Gao, X., Saridakis, E.N.: Towards anisotropy-free and nonsingular bounce cosmology with scale-invariant perturbations. Phys. Rev. D 88(4), 043525 (2013). doi:10.1103/PhysRevD.88.043525. arXiv:1303.2372

    Article  ADS  Google Scholar 

  231. Li, M.: Note on the production of scale-invariant entropy perturbation in the Ekpyrotic universe. Phys. Lett. B 724, 192 (2013). doi:10.1016/j.physletb.2013.06.035. arXiv:1306.0191

    Article  ADS  MathSciNet  MATH  Google Scholar 

  232. Fertig, A., Lehners, J.L., Mallwitz, E.: Ekpyrotic perturbations with small non-Gaussian corrections. Phys. Rev. D 89(10), 103537 (2014). doi:10.1103/PhysRevD.89.103537. arXiv:1310.8133

    Article  ADS  Google Scholar 

  233. Fertig, A., Lehners, J.L.: The non-minimal ekpyrotic trispectrum. JCAP 1601(01), 026 (2016). doi:10.1088/1475-7516/2016/01/026. arXiv:1510.03439

    Article  ADS  MathSciNet  Google Scholar 

  234. Gao, X., Lilley, M., Peter, P.: Production of non-gaussianities through a positive spatial curvature bouncing phase. JCAP 1407, 010 (2014). doi:10.1088/1475-7516/2014/07/010. arXiv:1403.7958

    Article  ADS  MathSciNet  Google Scholar 

  235. Gao, X., Lilley, M., Peter, P.: Non-Gaussianity excess problem in classical bouncing cosmologies. Phys. Rev. D 91(2), 023516 (2015). doi:10.1103/PhysRevD.91.023516. arXiv:1406.4119

    Article  ADS  Google Scholar 

  236. Quintin, J., Sherkatghanad, Z., Cai, Y.F., Brandenberger, R.H.: Evolution of cosmological perturbations and the production of non-Gaussianities through a nonsingular bounce: Indications for a no-go theorem in single field matter bounce cosmologies. Phys. Rev. D 92(6), 063532 (2015). doi:10.1103/PhysRevD.92.063532. arXiv:1508.04141

    Article  ADS  Google Scholar 

  237. Chen, B., Wang, Y., Xue, W., Brandenberger, R.: String gas cosmology and non-Gaussianities. Universe 3(3), 2 (2015). arXiv:0712.2477

    Google Scholar 

  238. Copeland, E.J., Myers, R.C., Polchinski, J.: Cosmic F and D strings. JHEP 0406, 013 (2004). doi:10.1088/1126-6708/2004/06/013. arXiv:hep-th/0312067

    Article  ADS  Google Scholar 

  239. Witten, E.: Cosmic superstrings. Phys. Lett. B 153, 243 (1985). doi:10.1016/0370-2693(85)90540-4

    Article  ADS  MathSciNet  Google Scholar 

  240. Brandenberger, R.H.: Searching for cosmic strings in new observational windows. Nucl. Phys. Proc. Suppl. 246–247, 45 (2014). doi:10.1016/j.nuclphysbps.2013.10.064. arXiv:1301.2856

    Article  Google Scholar 

  241. Lehners, J.L., Wilson-Ewing, E.: Running of the scalar spectral index in bouncing cosmologies. JCAP 1510(10), 038 (2015). doi:10.1088/1475-7516/2015/10/038. arXiv:1507.08112

    Article  ADS  Google Scholar 

  242. Brandenberger, R.H., Nayeri, A., Patil, S.P.: Closed string thermodynamics and a blue tensor spectrum. Phys. Rev. D 90(6), 067301 (2014). doi:10.1103/PhysRevD.90.067301. arXiv:1403.4927

    Article  ADS  Google Scholar 

  243. Boyle, L.A., Steinhardt, P.J., Turok, N.: The cosmic gravitational wave background in a cyclic universe. Phys. Rev. D 69, 127302 (2004). doi:10.1103/PhysRevD.69.127302. arXiv:hep-th/0307170

    Article  ADS  Google Scholar 

  244. Martin, J., Ringeval, C., Vennin, V.: How well can future CMB missions constrain cosmic inflation? JCAP 1410(10), 038 (2014). doi:10.1088/1475-7516/2014/10/038. arXiv:1407.4034

    Article  ADS  Google Scholar 

  245. Allen, L.E., Wands, D.: Cosmological perturbations through a simple bounce. Phys. Rev. D 70, 063515 (2004). doi:10.1103/PhysRevD.70.063515. arXiv:astro-ph/0404441

    Article  ADS  Google Scholar 

  246. Cai, Y.F., Brandenberger, R., Zhang, X.: The matter bounce curvaton scenario. JCAP 1103, 003 (2011). doi:10.1088/1475-7516/2011/03/003. arXiv:1101.0822

    Article  ADS  Google Scholar 

  247. Kobayashi, T., Yamaguchi, M., Yokoyama, J.: G-inflation: Inflation driven by the Galileon field. Phys. Rev. Lett. 105, 231302 (2010). doi:10.1103/PhysRevLett.105.231302. arXiv:1008.0603

    Article  ADS  Google Scholar 

  248. Liddle, A.R., Lyth, D.H.: The cold dark matter density perturbation. Phys. Rep. 231, 1 (1993). doi:10.1016/0370-1573(93)90114-S. arXiv:astro-ph/9303019

    Article  ADS  Google Scholar 

  249. Bonvin, C., Durrer, R., Maartens, R.: Can primordial magnetic fields be the origin of the BICEP2 data? Phys. Rev. Lett. 112(19), 191303 (2014). doi:10.1103/PhysRevLett.112.191303. arXiv:1403.6768

    Article  ADS  Google Scholar 

  250. Durrer, R., Figueroa, D.G., Kunz, M.: Can self-ordering scalar fields explain the BICEP2 \(B\)-mode signal? JCAP 1408, 029 (2014). doi:10.1088/1475-7516/2014/08/029. arXiv:1404.3855

    Article  ADS  Google Scholar 

  251. Danos, R.J., Brandenberger, R.H., Holder, G.: A signature of cosmic strings wakes in the CMB polarization. Phys. Rev. D 82, 023513 (2010). doi:10.1103/PhysRevD.82.023513. arXiv:1003.0905

    Article  ADS  Google Scholar 

  252. Goldwirth, D.S., Piran, T.: Initial conditions for inflation. Phys. Rep. 214, 223 (1992). doi:10.1016/0370-1573(92)90073-9

    Article  ADS  Google Scholar 

  253. Brandenberger, R.H., Kung, J.H.: Chaotic inflation as an attractor in initial condition space. Phys. Rev. D 42, 1008 (1990). doi:10.1103/PhysRevD.42.1008

    ADS  Google Scholar 

  254. Feldman, H.A., Brandenberger, R.H.: Chaotic inflation with metric and matter perturbations. Phys. Lett. B 227, 359 (1989). doi:10.1016/0370-2693(89)90944-1

    Article  ADS  Google Scholar 

  255. Brandenberger, R.: Initial conditions for inflation—a short review. Int. J. Mod. Phys. D 26(1), 1740002 (2017). doi:10.1142/S0218271817400028. arXiv:1601.01918

  256. East, W.E., Kleban, M., Linde, A., Senatore, L.: Beginning inflation in an inhomogeneous universe. JCAP 1609(9), 010 (2016). doi:10.1088/1475-7516/2016/09/010. arXiv:1511.05143

  257. Clough, K., Lim, E.A., DiNunno, B.S., Fischler, W., Flauger, R., Paban, S.: Robustness of inflation to inhomogeneous initial conditions, arXiv:1608.04408

  258. Buonanno, A., Damour, T., Veneziano, G.: Pre-big bang bubbles from the gravitational instability of generic string vacua. Nucl. Phys. B 543, 275 (1999). doi:10.1016/S0550-3213(98)00805-0. arXiv:hep-th/9806230

    Article  ADS  MathSciNet  MATH  Google Scholar 

  259. Carroll. S.M., Chen, J.: Does inflation provide natural initial conditions for the universe?, Gen. Rel. Grav. 37, 1671 (2005) [Int. J. Mod. Phys. D 14, 2335 (2005)] doi:10.1142/S0218271805008054. arXiv:gr-qc/0505037

  260. Peter, P., Pinto-Neto, N.: Cosmology without inflation. Phys. Rev. D 78, 063506 (2008). doi:10.1103/PhysRevD.78.063506. arXiv:0809.2022

    Article  ADS  MathSciNet  Google Scholar 

  261. Maier, R., Pereira, S., Pinto-Neto, N., Siffert, B.B.: Bouncing models with a cosmological constant. Phys. Rev. D 85, 023508 (2012). doi:10.1103/PhysRevD.85.023508. arXiv:1111.0946

    Article  ADS  Google Scholar 

  262. Cai, Y.F., Brandenberger, R., Peter, P.: Anisotropy in a nonsingular bounce. Class. Quant. Grav. 30, 075019 (2013). doi:10.1088/0264-9381/30/7/075019. arXiv:1301.4703

    Article  ADS  MATH  Google Scholar 

  263. Belinsky, V., Khalatnikov, I., Lifshitz, E.: Oscillatory approach to a singular point in the relativistic cosmology. Adv. Phys. 19, 525 (1970)

    Article  ADS  Google Scholar 

  264. Lifshitz, E., Khalatnikov, I.: Investigations in relativistic cosmology. Adv. Phys. 12, 185 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  265. Erickson, J.K., Wesley, D.H., Steinhardt, P.J., Turok, N.: Kasner and mixmaster behavior in universes with equation of state \(w \gg 1\). Phys. Rev. D69, 063514 (2004). doi:10.1103/PhysRevD.69.063514. arXiv:hep-th/0312009

    ADS  MathSciNet  Google Scholar 

  266. Garfinkle, D., Lim, W.C., Pretorius, F., Steinhardt, P.J.: Evolution to a smooth universe in an ekpyrotic contracting phase with \(w \gg 1\). Phys. Rev. D 78, 083537 (2008). doi:10.1103/PhysRevD.78.083537. arXiv:0808.0542

    Article  ADS  MathSciNet  Google Scholar 

  267. Karouby, J., Brandenberger, R.: A radiation bounce from the Lee-Wick construction? Phys. Rev. D 82, 063532 (2010). doi:10.1103/PhysRevD.82.063532. arXiv:1004.4947

    Article  ADS  Google Scholar 

  268. Bozza, V., Bruni, M.: A solution to the anisotropy problem in bouncing cosmologies. JCAP 0910, 014 (2009). doi:10.1088/1475-7516/2009/10/014. arXiv:0909.5611

    Article  ADS  Google Scholar 

  269. Qiu, T., Gao, X., Saridakis, E.N.: Towards anisotropy-free and nonsingular bounce cosmology with scale-invariant perturbations. Phys. Rev. D 88(4), 043525 (2013). doi:10.1103/PhysRevD.88.043525. arXiv:1303.2372

    Article  ADS  Google Scholar 

  270. Barrow, J.D., Ganguly, C.: Evolution of initially contracting Bianchi Class A models in the presence of an ultra-stiff anisotropic pressure fluid. Class. Quant. Grav. 33(12), 125004 (2016). doi:10.1088/0264-9381/33/12/125004. arXiv:1510.01095

    Article  ADS  MathSciNet  MATH  Google Scholar 

  271. Barrow, J.D., Yamamoto, K.: Anisotropic pressures at ultra-stiff singularities and the stability of cyclic universes. Phys. Rev. D 82, 063516 (2010). doi:10.1103/PhysRevD.82.063516. arXiv:1004.4767

    Article  ADS  Google Scholar 

  272. Battefeld, D., Battefeld, T.: The relic problem of string gas cosmology. Phys. Rev. D 80, 063518 (2009). doi:10.1103/PhysRevD.80.063518. arXiv:0907.2443

    Article  ADS  MATH  Google Scholar 

  273. Braun, V., He, Y.H., Ovrut, B.A., Pantev, T.: The exact MSSM spectrum from string theory. JHEP 0605, 043 (2006). doi:10.1088/1126-6708/2006/05/043. arXiv:hep-th/0512177

    Article  ADS  MathSciNet  Google Scholar 

  274. Braun, V., He, Y.H., Ovrut, B.A.: Supersymmetric hidden sectors for heterotic standard models. JHEP 1309, 008 (2013). doi:10.1007/JHEP09(2013)008. arXiv:1301.6767

    Article  ADS  Google Scholar 

  275. Li, C., Brandenberger, R.H., Cheung, Y.K.E.: Big bounce genesis. Phys. Rev. D 90(12), 123535 (2014). doi:10.1103/PhysRevD.90.123535. arXiv:1403.5625

    Article  ADS  Google Scholar 

  276. Cheung, Y.K.E., Kang, J.U., Li, C.: Dark matter in a bouncing universe. JCAP 1411(11), 001 (2014). doi:10.1088/1475-7516/2014/11/001. arXiv:1408.4387

    Article  ADS  Google Scholar 

  277. Vitenti, S.D.P., Pinto-Neto, N.: Large adiabatic scalar perturbations in a regular bouncing universe. Phys. Rev. D 85, 023524 (2012). doi:10.1103/PhysRevD.85.023524. arXiv:1111.0888

    Article  ADS  Google Scholar 

  278. Xue, B., Steinhardt, P.J.: Evolution of curvature and anisotropy near a nonsingular bounce. Phys. Rev. D 84, 083520 (2011). doi:10.1103/PhysRevD.84.083520. arXiv:1106.1416

    Article  ADS  Google Scholar 

  279. Pinto-Neto, N., Vitenti, S.D.P.: Comment on Growth of covariant perturbations in the contracting phase of a bouncing universe? Phys. Rev. D 89(2), 028301 (2014). doi:10.1103/PhysRevD.89.028301. arXiv:1312.7790

    Article  ADS  Google Scholar 

  280. Kunze, K.E.: Cosmological magnetic fields. Plasma Phys. Control. Fusion 55, 124026 (2013). doi:10.1088/0741-3335/55/12/124026. arXiv:1307.2153

    Article  ADS  Google Scholar 

  281. Arkani-Hamed, N., Cheng, H.C., Luty, M.A., Mukohyama, S.: Ghost condensation and a consistent infrared modification of gravity. JHEP 0405, 074 (2004). doi:10.1088/1126-6708/2004/05/074. arXiv:hep-th/0312099

    Article  MathSciNet  Google Scholar 

  282. Creminelli, P., Luty, M.A., Nicolis, A., Senatore, L.: Starting the universe: stable violation of the null energy condition and non-standard cosmologies. JHEP 0612, 080 (2006). doi:10.1088/1126-6708/2006/12/080. arXiv:hep-th/0606090

    Article  ADS  MathSciNet  MATH  Google Scholar 

  283. Elder, B., Joyce, A., Khoury, J.: From satisfying to violating the null energy condition. Phys. Rev. D 89(4), 044027 (2014). doi:10.1103/PhysRevD.89.044027. arXiv:1311.5889

    Article  ADS  Google Scholar 

  284. Nicolis, A., Rattazzi, R., Trincherini, E.: The Galileon as a local modification of gravity. Phys. Rev. D 79, 064036 (2009). doi:10.1103/PhysRevD.79.064036. arXiv:0811.2197

    Article  ADS  MathSciNet  Google Scholar 

  285. Creminelli, P., Hinterbichler, K., Khoury, J., Nicolis, A., Trincherini, E.: Subluminal Galilean genesis. JHEP 1302, 006 (2013). doi:10.1007/JHEP02(2013)006. arXiv:1209.3768

    Article  ADS  MathSciNet  MATH  Google Scholar 

  286. Biswas, T., Koivisto, T., Mazumdar, A.: Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity. JCAP 1011, 008 (2010). doi:10.1088/1475-7516/2010/11/008. arXiv:1005.0590

    Article  ADS  Google Scholar 

  287. Dubovsky, S., Gregoire, T., Nicolis, A., Rattazzi, R.: Null energy condition and superluminal propagation. JHEP 0603, 025 (2006). doi:10.1088/1126-6708/2006/03/025. arXiv:hep-th/0512260

    Article  ADS  MathSciNet  MATH  Google Scholar 

  288. Rubakov, V.A.: The null energy condition and its violation. Phys. Usp. 57, 128 (2014). doi:10.3367/UFNe.0184.201402b.0137. arXiv:1401.4024

    Article  ADS  Google Scholar 

  289. Misner, C.W.: Mixmaster universe. Phys. Rev. Lett. 22, 1071 (1969). doi:10.1103/PhysRevLett.22.1071

    Article  ADS  MATH  Google Scholar 

  290. Vafa, C.: The string landscape and the swampland, arXiv:hep-th/0509212

  291. Arkani-Hamed, N., Motl, L., Nicolis, A., Vafa, C.: The string landscape, black holes and gravity as the weakest force. JHEP 0706, 060 (2007). doi:10.1088/1126-6708/2007/06/060. arXiv:hep-th/0601001

    Article  ADS  MathSciNet  Google Scholar 

  292. Martin, J., Ringeval, C., Trotta, R., Vennin, V.: The best inflationary models after Planck. JCAP 1403, 039 (2014). doi:10.1088/1475-7516/2014/03/039. arXiv:1312.3529

    ADS  MathSciNet  Google Scholar 

  293. Brandenberger, R.H.: Processing of cosmological perturbations in a cyclic cosmology. Phys. Rev. D 80, 023535 (2009). doi:10.1103/PhysRevD.80.023535. arXiv:0905.1514

    Article  ADS  MathSciNet  Google Scholar 

  294. Steinhardt, P.J., Turok, N.: Cosmic evolution in a cyclic universe. Phys. Rev. D 65, 126003 (2002). doi:10.1103/PhysRevD.65.126003. arXiv:hep-th/0111098

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (RB) wishes to thank the Institute for Theoretical Studies of the ETH Zürich for kind hospitality. He acknowledges financial support from Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zurich Foundation, and from a Simons Foundation fellowship. The research of RB is also supported in part by funds from NSERC and the Canada Research Chair program. PP would like to thank the Labex Institut Lagrange de Paris (Reference ANR-10-LABX-63) part of the Idex SUPER, within which this work has been partly done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Peter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandenberger, R., Peter, P. Bouncing Cosmologies: Progress and Problems. Found Phys 47, 797–850 (2017). https://doi.org/10.1007/s10701-016-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0057-0

Keywords

Navigation