Skip to main content
Log in

Information Theoretic Characterization of Physical Theories with Projective State Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardy, L.: Quantum theory from five reasonable axioms. arXiv:quant-ph/0101012

  2. Dakic, B., Brukner, C.: Quantum theory and beyond: is entanglement special? In: Halvorson, H. (ed.) Deep Beauty: Understanding the Quantum World through Mathematical Innovation, pp. 365–392. Cambridge University Press (2011). arXiv:0911.0695

  3. Masanes, L., Mueller, M.P.: A derivation of quantum theory from physical requirements. New J. Phys. 13, 063001 (2011). arXiv: quant-ph/1004.1483

  4. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010). arXiv:quant-ph/0908.1583

  5. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311 (2011). arXiv:quant-ph/1011.6451

  6. Hardy, L.: Reformulating and reconstructing quantum theory. arXiv:1104.2066

  7. Hardy, L.: Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. J. Phys. A 40, 3081 (2007). arXiv:gr-qc/0608043v1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Barret, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75, 032304 (2007). arXiv:quant-ph/0508211

  9. Hardy, L., Wooters, W.K.: Limited Holism and real-vector-space quantum theory. arXiv:1005.4870

  10. Janotta, P., Lal, R.: Generalized probabilistic theories without the no-restriction hypothesis. Phys. Rev. A 87, 052131 (2013)

    Article  ADS  Google Scholar 

  11. Mueller, M.P., Oppenheim, J., Dahlsten, O.C.O.: The black hole information problem beyond quantum theory. J. High Energy Phys. 2012(9), 116 (2012)

    Article  ADS  Google Scholar 

  12. Masanes, L., Mueller, M.P.: Three-dimensionality of space and the quantum bit: an information-theoretic approach. New J. Phys. 15, 053040 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  13. Barnum, H., Wilce, A.: Post classical probability theory. In: Chiribella, G., Spekkens, R.W. (eds.) Quantum Theory: Informational Foundations and Foils. Springer. arXiv:1205.3833

  14. Perinotti, P.: Discord and non-classicality in probabilistic theories. Phys. Rev. Lett. 108, 120502 (2012)

    Article  ADS  Google Scholar 

  15. Mueller, M.P., Ududec, C.: The structure of reversible computation determines the self-duality of quantum theory. Phys. Rev. Lett. 108, 130401 (2012)

    Article  ADS  Google Scholar 

  16. D’Ariano, G.M., Tosini, A., Manessi, F.: Spooky action at a distance in general probabilistic theories. Phys. Lett. A 376, 2926–2930 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Janotta, P., Gogolin, C., Barrett, J., Brunner, N.: Limits on nonlocal correlations from the structure of the local state space. New J. Phys. 13, 063024 (2011)

    Article  ADS  MATH  Google Scholar 

  18. Abramsky, S.: Relational hidden variables and non-locality. Stud. Log. 101(2), 411–452 (2013)

    Article  MathSciNet  Google Scholar 

  19. Masanes, L., Mueller, M.P., Augusiak, R., Perez-Garcia, D.: Existence of an information unit as a postulate of quantum theory. PNAS 110(41), 16373 (2013)

    Article  ADS  Google Scholar 

  20. D’Ariano, G.M., Tosini, A.: Testing axioms for quantum mechanics on probabilistic toy-theories. Quantum Inf. Process. 9, 95–141 (2010). arXiv:0911.5409

  21. Janotta, P., Hinrichsen, H.: Generalized probability theories: what determines the structure of quantum theory? J. Phys. A 47, 323001 (2014)

    Article  MathSciNet  Google Scholar 

  22. Cohn, P.M.: Encyclopedia of Mathematics and its Applications, Skew Fields: Theory of General Division Rings. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  23. Casse, R.: Projective Geometry: An Introduction. Oxford University Press, Oxford (2006)

    Google Scholar 

  24. Fivel, D.: Derivation of the rules of quantum mechanics from information-theoretic axioms. arXiv:1010.5300

  25. Veblen, O., Young, J.W.: A set of assumptions for projective geometry. Am. J. Math. 30(4), 347–380 (1908)

    Article  MathSciNet  MATH  Google Scholar 

  26. Veblen, O., Young, J.W.: Projective Geometry, vol. I. Ginn and Co., Boston (1910)

    MATH  Google Scholar 

  27. Veblen, O., Young, J.W.: Projective Geometry, vol. II. Ginn and Co., Boston (1917)

    Google Scholar 

  28. Zaopo, M. to be published

  29. Chang, Nam: L., Lewis, Z., Minic, D., Takeuchi, T.: Quantum fun: the \(q = 1\) limit of galois field quantum mechanics, projective geometry and the field with one element. J. Phys. A 47, 405304 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zaopo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaopo, M. Information Theoretic Characterization of Physical Theories with Projective State Space. Found Phys 45, 943–958 (2015). https://doi.org/10.1007/s10701-015-9910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9910-9

Keywords

Navigation