Skip to main content
Log in

Complex Vector Formalism of Harmonic Oscillator in Geometric Algebra: Particle Mass, Spin and Dynamics in Complex Vector Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Elementary particles are considered as local oscillators under the influence of zeropoint fields. Such oscillatory behavior of the particles leads to the deviations in their path of motion. The oscillations of the particle in general may be considered as complex rotations in complex vector space. The local particle harmonic oscillator is analyzed in the complex vector formalism considering the algebra of complex vectors. The particle spin is viewed as zeropoint angular momentum represented by a bivector. It has been shown that the particle spin plays an important role in the kinematical intrinsic or local motion of the particle. From the complex vector formalism of harmonic oscillator, for the first time, a relation between mass \(m\) and bivector spin \(S\) has been derived in the form \(\varvec{\sigma }_3 mc^2{\mathcal {J}}_{\pm } =\lambda \Omega _{\mathbf{s}} \cdot \mathrm{{S}} {\mathcal {J}}_{\pm }\). Where, \(\Omega _{s}\) is the angular velocity bivector of complex rotations, \(c\) is the velocity of light. The unit vector \(\varvec{\sigma }_3\) acts as an operator on the idempotents \({\mathcal {J}}_{+}\) and \({\mathcal {J}}_{-}\) to give the eigen values \(\lambda =\pm 1.\) The constant \(\lambda \) represents two fold nature of the equation corresponding to particle and antiparticle states. Further the above relation shows that the mass of the particle may be interpreted as a local spatial complex rotation in the rest frame. This gives an insight into the nature of fundamental particles. When a particle is observed from an arbitrary frame of reference, it has been shown that the spatial complex rotation dictates the relativistic particle motion. The mathematical structure of complex vectors in space and spacetime is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer, T.H.: The classical vacuum. Sci. Am. 253, 70 (1985)

    Article  ADS  Google Scholar 

  2. Marshal, T.W.: Random electrodynamics. Proc. R. Soc. Lond. A 276, 475–491 (1963)

    Article  ADS  Google Scholar 

  3. Boyer, T.H.: Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zeropoint radiation. Phys. Rev. D 11, 790–808 (1975)

    Article  ADS  Google Scholar 

  4. Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press, Boston (1994)

    Google Scholar 

  5. de La Pena, L., Cetto, A.M.: The Quantum Dice: An Introduction to Stochastic Electrodynamics. Kluwer Academic, Dordrecht (1996)

    Book  Google Scholar 

  6. Haisch, B., Rueda, A., Puthoff, H.E.: Inertia as zeropoint field Lorentz force. Phys. Rev. A49, 678 (1994)

    Article  ADS  Google Scholar 

  7. Rueda, A., Haisch, B.: Contribution to inertial mass by reaction of vacuum to accelerated motion. Found. Phys. 28, 1057 (1998)

    Article  MathSciNet  Google Scholar 

  8. Boyer, T.H.: Connection between the adiabatic hypothesis of old quantum theory and classical electrodynamics with classical electromagnetic zero-point radiation. Phys. Rev. A 18, 1238 (1978)

    Article  ADS  Google Scholar 

  9. Bohm, A.: Quantum Mechanics Foundations and Applications. Springer, New York (2003)

    Google Scholar 

  10. Hestenes, D.: Spin and uncertainty in the interpretation of quantum mechanics. Am. J. Phys. 47, 399–415 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. Uhlenbeck, G.E., Goudsmit, S.: Spinning electrons and the structure of spectra. Nature 117, 264 (1926)

    Article  ADS  Google Scholar 

  12. Bichowsky, F.R., Urey, H.C.: Possible explanation of the relativity doublets and anomalous Zeeman effect by means of a magnetic electron. Proc. Nat. Acad. Sci. 12, 80 (1926)

    Article  ADS  Google Scholar 

  13. Sakurai, J.J.: Modern Quantum Mechanics. Pearson Education, New Jersey (164)

    Google Scholar 

  14. Belinfante, F.J.: On the spin angular momentum of mesons. Physica 6, 887–898 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ohanion, H.C.: What is spin? Am. J. Phys. 54, 500 (1986)

    Article  ADS  Google Scholar 

  16. Dirac, P.A.M.: Physical Principles of Quantum Mechanics. Clarendon Press, Oxford (1947)

    Google Scholar 

  17. Sakurai, J.J.: Advanced Quantum Mechanics, p. 128. Pearson Education, New Jersey (1967)

    Google Scholar 

  18. Huang, K.: On the zitterbewegung of Dirac electron. Am. J. Phys. 20, 479 (1952)

    Article  ADS  MATH  Google Scholar 

  19. Barut, A.O., Bracken, A.J.: Zitterbewegung and the internal geometry of electron. Phys. Rev. D 23, 2454 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  20. Van Holten, J.W.: On the electrodynamics of spinning particles. Nucl. Phys. B 356, 3–26 (1991)

    Article  ADS  Google Scholar 

  21. Hestenes, D.: Mysteries and insights of Dirac theory. Annales de la Foundation Louis de Broglie 28, 390–408 (2003)

    MathSciNet  Google Scholar 

  22. Hestenes, D.: Zitterbewegung in radiative processes. In: Hestenes, D., Weingartshofer, A. (eds.) The Electron, pp. 21–36. Kluwer Academic, Dordrecht (1991)

    Chapter  Google Scholar 

  23. Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40, 1–54 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Sidharth, B.G.: Revisiting zitterbewegung. Int. J. Theor. Phys. 48, 497–806 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Newman, E.T.: Classical geometric origin of magnetic moments, spin-angular momentum and the Dirac gyromagnetic ratio. Phys. Rev. D 65, 104005 (2002)

    Article  ADS  Google Scholar 

  26. Barducci, A., Casalbuoni, R., Lusanna, L.: A Possible Interpretation of theories involving Grassmann variables. Lett. Nuovo Cim. 19, 581 (1977)

    Article  Google Scholar 

  27. Barut, A.O., Zanghi, A.J.: Classical model of the Dirac electron. Phys. Rev. Lett. 52, 2009–2012 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  28. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  29. Doran, C.J.L., Lasenby, A.N., Gull, S.F., Somaroo, S., Challinor, A.D.: Spacetime algebra and electron physics. Adv. Imag. Electron Phys. 95, 271–386 (1996)

    Article  Google Scholar 

  30. Rohrlich, F.: Classical Charged Particles. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  31. Kiessling, M.K.H.: Classical electron theory and conservation laws. Phys. Lett. A 258, 197 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Compton, A.H.: The size and shape of electron. Phys. Rev. 14, 247 (1919)

    Article  ADS  Google Scholar 

  33. Frenkel, J.: Die Elektrodynamik des rotierenden elektrons. Z. Phys. 37, 243 (1926)

    Article  ADS  MATH  Google Scholar 

  34. Thomas, L.H.: Kinematics of an electron with an axis. Philos. Mag. 3, 1–22 (1927)

    MATH  Google Scholar 

  35. Mathisson, M.: Neue mechanik materietter systeme. Acta. Phys. Pol. 6, 163–200 (1937)

    Google Scholar 

  36. Weyssenhoff, J., Raabbe, A.: Relativistic dynamics of spin fluids and spin particles. Acta. Phys. Pol. 9, 7 (1947)

    Google Scholar 

  37. Hovarthy, P.A.: Mathisson’s spinning electron: Noncommutative mechanics and exotic Galilean symmetry, 66 years ago. Acta. Phys. Pol. B 34, 2611–2622 (2003)

    ADS  Google Scholar 

  38. Bunge, M.: The picture of the electron. Nuovo Cim. B 1, 977 (1955)

    Article  ADS  Google Scholar 

  39. Bhabha, J.H., Corben, H.: General classical theory of spinning particles in a Maxwell field. Proc. R. Soc. Lond. A 178(974), 273–314 (1941)

    Article  ADS  MathSciNet  Google Scholar 

  40. Rivas, M.: Kinematical Theory of Spinning Particles: Classical and Quantum Mechanical Formalism of Elementary Particles. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  41. Salesi, G.: The spin and Madelung fluid. Mod. Phys. Lett. A 11, 1815–1853 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Ghirardi, G.C., Omero, C., Recami, A., Weber, T.: The stochastic interpretation of quantum mechanics: a critical review. Riv. Nuovo Cim. 1, 1–34 (1978)

    Article  Google Scholar 

  43. Recami, E., Salesi, G.: Kinematics and hydrodynamics of spinning particles. Phys. Rev. A 57, 98–105 (1998)

    Article  ADS  Google Scholar 

  44. Salesi, G., Recami, E.: A veleocity field and operator for spinning particles in (nonrelativistic) quantum mechanics. Found. Phys. 28, 763–773 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  45. Salesi, G., Recami, E.: Hydrodynamical reformulation and quantum limit of the Barut–Zanghi theory. Found. Phys. Lett. 10, 533–546 (1997)

    Article  MathSciNet  Google Scholar 

  46. Pavsic, M., Recami, E., Rodrigues, W.A., Maccarrone, G.D., Raciti, F., Saleci, G.: Spin and electron structure. Phys. Lett. B 318, 481 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  47. Vaz, J., Rodriguez, W.A.: Zitterbewegung and the electromagnetic field of the electron. Phys. Lett. B 319, 243 (1993)

    Article  ADS  Google Scholar 

  48. Cavalleri, G.: h derived from cosmology and origin of special relativity and QM. Nuovo Cim. B 112, 1193–1205 (1997)

    ADS  Google Scholar 

  49. Bosi, L., Cavalleri, G., Barbero, F., Bertazzi, G., Tonni E., Spavieri, G.: Review of stochastic electrodynamics with and without spin. In: Proceedings of Physical Interpretation of Relativity Theory (PIRT XI), London, UK, pp. 12–15 Sep (2008)

  50. Clifford, W.K.: On the space theory of matter (1864–1876: Printed 1876), 2, 157–158. In: Newman, J.R. (ed.) In: Proceedings of the Cambridge Philosophical Society. The World of Mathematics, vol. 1. George and Unwin, London (1960)

  51. Ryder, L.: Quantum Field Theory. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  52. Einstein, A.: The Meaning of Relativity. Princeton University Press, Princeton (2006)

    Google Scholar 

  53. Hestenes, D.: Geometry of Dirac theory. In: Symposium on Mathematics of Physical Spacetime. Facultad de Quimica, Universdad National Autonoma de Mexico city, pp. 67–96 (1981)

  54. Wigner, E.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)

    Article  MathSciNet  Google Scholar 

  55. Batty-Pratt, E.P., Racey, T.J.: Geometric model of the fundamental particles. Int. J. Theor. Phys. 19, 437–475 (1980)

    Article  Google Scholar 

  56. Muralidhar, K.: Classical origin of quantum spin. Apeiron 18, 146 (2011)

    Google Scholar 

  57. Muralidhar, K.: The spin bivector and zeropoint energy in geometric algebra. Adv. Stud. Theor. Phys. 6, 675–686 (2012)

    Google Scholar 

  58. Tiwari, S.C.: The nature of electronic charge. Found. Phys. Lett. 19, 51–62 (2006)

    Article  MathSciNet  Google Scholar 

  59. Jammer, M.: Concepts of Mass in Contemporary Physics and Philosophy. Princeton University Press, Princeton (2000)

    Google Scholar 

  60. Modanese, G.: Inertial mass and vacuum fluctuations in quantum field theory. Found. Phys. Lett. 16, 135–141 (2003)

    Article  MathSciNet  Google Scholar 

  61. Pollock, M.D.: On the Weyl gravitational conjuncture and massive spinor theory. Acta Phys. Pol. B 41, 779–794 (2010)

    MathSciNet  Google Scholar 

  62. Pollock, M.D.: On vacuum fluctuations and particle masses. Found. Phys. 42, 1300–1308 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  63. Machicote, J.E.R.: Time as a geometrical concept involving angular relations in classical mechanics and quantum mechanics. Found. Phys. 40, 1744–1778 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  64. Ueda, K., Ishikawa, K.L.: Auttoclocks play devil’s advocate. Nat. Phys. 7, 371–372 (2011)

    Article  Google Scholar 

  65. Krausz, F., Ivanov, M.: Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    Article  ADS  Google Scholar 

  66. Chappell, J.M., Iqbal, A., Lannella, N., Abbott, D.: Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime. PLoS One 45(9), 1480–1490 (2012)

    Google Scholar 

  67. Okun, L.B.: The concept of mass (mass, energy, relativity). Sov. Phys. Usp. 32, 629 (1989)

    Article  ADS  Google Scholar 

  68. Sobczyk, G.: Special relativity in complex vector algebra. (2007)

  69. Hestenes, D.: Spacetime physics with geometric algebra. Am. J. Phys. 71, 691–704 (2003)

    Article  ADS  Google Scholar 

  70. Hestenes, D.: Local observables in the Dirac theory. J. Math. Phys. 14, 893 (1973)

    Article  ADS  Google Scholar 

  71. Boudet, R., et al.: Quantum mechanics in the geometry of space-time elementary theory. In: Babaev, E. (ed.) Springer Briefs in Physics. Springer, Berlin (2011)

    Google Scholar 

  72. Sobczyk, G.: Unitary geometric algebra. Adv. Appl. Clifford Algebras 22, 827–836 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  73. Baylis, W.E., Cabrera, R., Keselica, J.D.: Quantum/classical interface: fermion spin. Adv. Appl. Clifford Algebras 20, 517–545 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  74. Sobczyk, G.: Geometric matrix algebra. Linear Algebra Appl. 429, 1163–1173 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  75. Vold, T.G.: An introduction to geometric algebra with an application in rigid body mechanics. Am. J. Phys. 61, 491–504 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Grössing, G., Pascasio, J.M., Schwabl, H.: A classical explanation of quantization. Found. Phys. 41, 1437–1453 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  77. Hestenes, D.: Spacetime structure of weak and electromagnetic interactions. Found. Phys. 12, 153–168 (1982)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muralidhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralidhar, K. Complex Vector Formalism of Harmonic Oscillator in Geometric Algebra: Particle Mass, Spin and Dynamics in Complex Vector Space. Found Phys 44, 266–295 (2014). https://doi.org/10.1007/s10701-014-9784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9784-2

Keywords

Navigation