Skip to main content
Log in

Homotopy and Path Integrals in the Time-dependent Aharonov-Bohm Effect

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

For time-independent fields the Aharonov-Bohm effect has been obtained by idealizing the coordinate space as multiply-connected and using representations of its fundamental homotopy group to provide information on what is physically identified as the magnetic flux. With a time-dependent field, multiple-connectedness introduces the same degree of ambiguity; by taking into account electromagnetic fields induced by the time dependence, full physical behavior is again recovered once a representation is selected. The selection depends on a single arbitrary time (hence the so-called holonomies are not unique), although no physical effects depend on the value of that particular time. These features can also be phrased in terms of the selection of self-adjoint extensions, thereby involving yet another question that has come up in this context, namely, boundary conditions for the wave function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Aharonov, Y., Bohm, D.: Further considerations on electromagnetic potentials in the quantum theory. Phys. Rev. 123, 1511–1524 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  3. Aharonov, Y., Bohm, D.: Remarks on the possibility of quantum electrodynamics without potentials. Phys. Rev. 125, 2192–2193 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Schulman, L.S.: Approximate topologies. J. Math. Phys. 12, 304–308 (1971)

    Article  ADS  Google Scholar 

  5. Schulman, L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981), Wiley Classics edition, 1996; Dover edition 2005, with supplements

    MATH  Google Scholar 

  6. Roy, S.M., Singh, V.: Time-dependent Aharonov-Bohm Hamiltonian and admissibility criteria of quantum wave functions. Nuovo Cimento 79A, 391–409 (1984)

    MathSciNet  ADS  Google Scholar 

  7. Healey, R.: Gauging What’s Real: The Conceptual Foundations of Gauge Theories. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  8. Nounou, A.M.: Holonomy interpretation and time: an incompatible match? A critical discussion of R. Healey’s gauging what’s real: the conceptual foundations of contemporary gauge theories. Erkenntnis 72, 387–409 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  10. Wheeler, J.A.: Delayed-choice experiments and the Bohr-Einstein dialog. In: Rhoads, J.E. (ed.) The American Philosophical Society and the Royal Society. Papers read at a meeting, June 5, 1980, pp. 9–40. American Philosophical Society, Philadelphia (1981)

    Google Scholar 

  11. Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  12. Schulman, L.S.: Ph.D. thesis. Princeton University, Princeton University (1967)

  13. Schulman, L.S.: A path integral for spin. Phys. Rev. 176, 1558–1569 (1968)

    Article  MathSciNet  ADS  Google Scholar 

  14. Kampen, N.G.V.: Can the Aharonov-Bohm effect transmit signals faster than light? Phys. Lett. A 106, 5–6 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  15. Brown, R.A., Home, D.: Locality and causality in time-dependent Aharonov-Bohm interference. Nuovo Cimento 107B, 303–316 (1992)

    ADS  Google Scholar 

  16. Comay, E.: Comments on the electromagnetic fields of a time-dependent solenoid. J. Phys. A 20, 5729–5731 (1987)

    Article  ADS  Google Scholar 

  17. Jackson, J.D.: Classical Electrodynamics, 1st edn. Wiley, New York (1962)

    Google Scholar 

  18. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  19. Earman, J.: Essential self-adjointness: implications for determinism and the classical-quantum correspondence. Synthese 169, 27–50 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laidlaw, M.G.G., DeWitt-Morette, C.: Feynman functional integrals for systems of indistinguishable particles. Phys. Rev. D 3, 1375–1378 (1971)

    Article  ADS  Google Scholar 

  21. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, New York (1953)

    Google Scholar 

  22. Lichtenberg, D.B.: The Standard Model of Elementary Particles. Bibliopolis, Naples (1991)

    MATH  Google Scholar 

  23. Abbott, T.A., Griffiths, D.J.: Acceleration without radiation. Am. J. Phys. 53, 1203–1211 (1985)

    Article  ADS  Google Scholar 

  24. Osakabe, N., Matsuada, T., Kawasaki, T., Endo, J., Tonomura, A.: Experimental confirmation of Aharonov-Bohm effect using a toroidal magnetic field confined by a superconductor. Phys. Rev. A 34, 815–822 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Schulman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaveau, B., Nounou, A.M. & Schulman, L.S. Homotopy and Path Integrals in the Time-dependent Aharonov-Bohm Effect. Found Phys 41, 1462–1474 (2011). https://doi.org/10.1007/s10701-011-9559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9559-y

Keywords

Navigation