Skip to main content
Log in

Quantum Mechanics on Finite Groups

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Although a few new results are presented, this is mainly a review article on the relationship between finite-dimensional quantum mechanics and finite groups. The main motivation for this discussion is the hidden subgroup problem of quantum computation theory. A unifying role is played by a mathematical structure that we call a Hilbert *-algebra. After reviewing material on unitary representations of finite groups we discuss a generalized quantum Fourier transform. We close with a presentation concerning position-momentum measurements in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chaturvedi, E. Ercolessi, G. Marmo, G. Morandi, N. Mukunda, and R. Simon, “Wigner distribution for finite dimensional quantum systems: an algebraic approach,” quant-ph/0507094 (2005).

  2. Cleve R., Watrous J. (2000). “Fast parallel circuits for the quantum Fourier transform”. Proc. 41st Annu. Symp. Foundations Comput. Sci. 454, 526–536

    MathSciNet  Google Scholar 

  3. Diaconis P., Rockmore D. (1990). “Efficient computation of the Fourier transform on finite groups”. J. Amer. Math. Soc. 3, 297–332

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Ettinger and P. Høyer, “A quantum observable for the graph isomorphism problem,” quant-ph/9901029 (1999).

  5. Ettinger M., Høyer P. (2000). “On quantum algorithms for noncommutative hidden subgroup”. Adv. Appl. Math. 25, 239–251

    Article  MATH  Google Scholar 

  6. Ettinger M., Høyer P., Knill E. (2004). “The quantum query complexity of the hidden subgroup problem is polynomia”. Inf. Processing Lett. 91, 43–48

    Article  Google Scholar 

  7. Grigni M., Schulman L., Vazirani M., Vazirani U. “Quantum mechanical algorithms for the nonabelian hidden subgroup problem”. Proc. 33rd ACM Symp. Theor. Comp. 68–74 (2001).

  8. Gruska J. (1999). Quantum Computing. McGraw-Hill, London

    Google Scholar 

  9. Harris J., Fulton W. (1991). “Representation theory”, Graduate Texts in Mathematics 129 Springer, New York

    Google Scholar 

  10. Köbler J., Schöning U., Torán J. (1993). The Graph Isomorphism Problem: Its Structural Complexity. Birkhauser, Boston

    Google Scholar 

  11. G. Kuperberg, “A subexponential-time algorithm for the dihedral hidden subgroup problem,” quant-ph/0302112 (2003).

  12. S. Lomonaco and L. Kauffman, “Quantum hidden subgroup problems: A mathematical perspective,” quant-ph/0201095 (2002).

  13. C. Lomont, “The hidden subgroup problem-review and open problems,” quant-ph/0411037 (2004).

  14. Mackey G. (1968). Induced Representations and Quantum Mechanics. Benjamin/Cummings, Reading, MA

    Google Scholar 

  15. Mackey G. (1978). Unitary Group Representations in Physics, Probability and Number Theory. Benjamin/Cummings, Reading, MA

    MATH  Google Scholar 

  16. Miller G. (1979). “Graph isomorphism, general remarks”. J. Comp. Sys. Sci. 18, 128–142

    Article  MATH  Google Scholar 

  17. Nielsen M., Chuang J. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  18. Pittenger A. (1999). An Introduction to Quantum Computing Algorithms. Birkhäuser, Boston

    MATH  Google Scholar 

  19. Preskill J. (1998). Quantum Computation and Information. California Institute of Technology, Pasadena

    Google Scholar 

  20. Shor P. (1997). “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”. SIAM J. Comput. 26, 1484–1509

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Simon, “Representations of finite and compact groups,” Graduate Studies in Mathematics 10 (American Mathematical Society, 1996).

  22. J. Waltrous, “Quantum algorithms for solvable groups,” Proceedings 33rd ACM Symposium on Theoretical Computation, 60–67 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Gudder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudder, S. Quantum Mechanics on Finite Groups. Found Phys 36, 1160–1192 (2006). https://doi.org/10.1007/s10701-006-9060-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-006-9060-1

Keywords

Navigation