Skip to main content
Log in

The Complexity–Stability Debate, Chemical Organization Theory, and the Identification of Non-classical Structures in Ecology

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We present a novel approach to represent ecological systems using reaction networks, and show how a particular framework called chemical organization theory (COT) sheds new light on the longstanding complexity–stability debate. Namely, COT provides a novel conceptual landscape plenty of analytic tools to explore the interplay between structure and stability of ecological systems. Given a large set of species and their interactions, COT identifies, in a computationally feasible way, each and every sub-collection of species that is closed and self-maintaining. These sub-collections, called organizations, correspond to the groups of species that can survive together (co-exist) in the long-term. Thus, the set of organizations contains all the stable regimes that can possibly happen in the dynamics of the ecological system. From here, we propose to conceive the notion of stability from the properties of the organizations, and thus apply the vast knowledge on the stability of reaction networks to the complexity–stability debate. As an example of the potential of COT to introduce new mathematical tools, we show that the set of organizations can be equipped with suitable joint and meet operators, and that for certain ecological systems the organizational structure is a non-boolean lattice, providing in this way an unexpected connection between logico-algebraic structures, popular in the foundations of quantum theory, and ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We omit the mathematical formulation of this property for simplicity.

  2. This is known in reaction network modeling as a flux vector. A flux vector is an specification of the relative rates of occurrence of reactions in the network.

  3. The ecological model we present in Fig. 2 might be a little unrealistic for an ecologist. However, it is important to note that this example aims at obtaining a non-distributive organizational structure for the smallest possible system. It is possible to find non-distributive organizational structures following only the interactions depicted in Table 2, but using a larger number of species and interactions.

  4. Non-reactive organizations such as \(\{s_1\}\) and \(\{s_2\}\) are omitted for simplicity

References

  • Aerts, D. (2002). Being and change: Foundations of a realistic operational formalism. In Probing the structure of quantum mechanics (pp. 71–110). World Scientific.

  • Aerts, D., Broekaert, J., Czachor, M., Kuna, M., Sinervo, B., & Sozzo, S. (2014). Quantum structure in competing lizard communities. Ecological Modelling, 281, 38–51.

    Google Scholar 

  • Aerts, D., Czachor, M., & Sozzo, S. (2010). A contextual quantum-based formalism for population dynamics. In 2010 AAAI fall symposium series.

  • Beltrametti, E. G., & Maczyński, M. J. (1995). On the range of non-classical probability. Reports on Mathematical Physics, 36(2–3), 195–213.

    Google Scholar 

  • Birkhoff, G., & Von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics, 37(4), 823–843. https://doi.org/10.2307/1968621.

    Article  Google Scholar 

  • Centler, F., & Dittrich, P. (2007). Chemical organizations in atmospheric photochemistries—A new method to analyze chemical reaction networks. Planetary and Space Science, 55(4), 413–428.

    Google Scholar 

  • Centler, F., Speroni di Fenizio, P., Matsumaru, N., & Dittrich, P. (2007) Chemical organizations in the central sugar metabolism of Escherichia coli. In Mathematical modeling of biological systems (Vol. I, pp. 105–119). Boston: Birkhäuser

  • Chen, Y., & Zhou, Z. (2003). Stable periodic solution of a discrete periodic LotkaVolterra competition system. Journal of Mathematical Analysis and Applications, 277(1), 358–366.

    Google Scholar 

  • Contreras, D., Pereira, U., Hernández, V., Reynaert, B., & Letelier, J. C. (2011). A loop conjecture for metabolic closure. Advances in artificial life, ECAL 2011: Proceedings of the 11th European conference on the synthesis and simulation of living systems. MIT Press

  • Dittrich, P., & Speroni Di Fenizio, P. (2007). Chemical organisation theory. Bulletin of Mathematical Biology, 69(4), 1199–1231.

    Google Scholar 

  • Dittrich, P., & Winter, L. (2005). Reaction networks as a formal mechanism to explain social phenomena. In Proceedings of 4th international workshop on agent-based approaches in economics and social complex systems (AESCS 2005) (pp. 9–13).

  • Dittrich, P., & Winter, L. (2008). Chemical organizations in a toy model of the political system. Advances in Complex Systems, 11(04), 609–627.

    Google Scholar 

  • Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., et al. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172–1185.

    Google Scholar 

  • Dunne, J., Williams, R., & Martinez, N. (2002). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5(4), 558–567.

    Google Scholar 

  • Fellermann, H., & Cardelli, L. (2014). Programming chemistry in DNA-addressable bioreactors. Journal of the Royal Society Interface, 11(99), 20130987.

    Google Scholar 

  • Finke, D. L., & Denno, R. F. (2004). Predator diversity dampens trophic cascades. Nature, 429(6990), 407–410.

    Google Scholar 

  • Florian, C., Kaleta, C., Speroni di Fenizio, P., & Dittrich, P. (2008). Computing chemical organizations in biological networks. Bioinformatics, 24(14), 1611–1618.

    Google Scholar 

  • Fontaine, C., Guimarães, P. R., Kéfi, S., Loeuille, N., Memmott, J., Van Der Putten, W. H., et al. (2011). The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 14(11), 1170–1181.

    Google Scholar 

  • GarcíaCallejas, D., MolownyHoras, R., & Araújo, M. B. (2018). Multiple interactions networks: Towards more realistic descriptions of the web of life. Oikos, 127(1), 5–22.

    Google Scholar 

  • Garg, V. K. (2015). Introduction to lattice theory with computer science applications. Hoboken: Wiley.

    Google Scholar 

  • Gil, B., Centler, F., Dittrich, P., Flamm, C., Stadler, B., & Stadler, P. (2009). A topological approach to chemical organizations. Artificial Life, 15(1), 71–88. ((2010): 853-856).

    Google Scholar 

  • Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310(5750), 987–991.

    Google Scholar 

  • Harley, J. (1959). The biology of mycorrhiza. London: Leonard Hill.

    Google Scholar 

  • Heiner, M., Gilbert, D., & Donaldson, R. (2008). Petri nets for systems and synthetic biology. In International school on formal methods for the design of computer, communication and software systems (pp. 215–264). Berlin: Springer.

  • Heylighen, F., Beigi, S., & Veloz, T. (2015). Chemical organization theory as a modeling framework for self-organization, autopoiesis and resilience. International Journal Of General Systems (submitted).

  • Hordijk, W., Hein, J., & Steel, M. (2010). Autocatalytic sets and the origin of life. Entropy, 12(7), 1733–1742.

    Google Scholar 

  • Hordijk, W., Steel, M., & Dittrich, P. (2018). Autocatalytic sets and chemical organizations: Modeling self-sustaining reaction networks at the origin of life. New Journal of Physics, 20(1), 015011.

    Google Scholar 

  • Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics, 19(4), 524–531.

    Google Scholar 

  • Janssen, M., & Ostrom, E. (2006). Empirically based, agent-based models. Ecology and Society, 11(2), 1–13.

    Google Scholar 

  • Jopp, F., Breckling, B., & Reuter, H. (Eds.). (2010). Modelling complex ecological dynamics. Berlin: Springer.

    Google Scholar 

  • Kaleta, C., Centler, F., & Dittrich, P. (2006). Analyzing molecular reaction networks. Molecular Biotechnology, 34(2), 117–123.

    Google Scholar 

  • Kaleta, C., Centler, F., Speroni di Fenizio, P., & Dittrich, P. (2008). Phenotype prediction in regulated metabolic networks. BMC Systems Biology, 2(1), 37.

    Google Scholar 

  • Kaleta, C., Richter, S., & Dittrich, P. (2009). Using chemical organization theory for model checking. Bioinformatics, 25(15), 1915–1922.

    Google Scholar 

  • Kondoh, M. (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science, 299(5611), 1388–1391.

    Google Scholar 

  • Kreyssig, P., Escuela, G., Reynaert, B., Veloz, T., Ibrahim, B., & Dittrich, P. (2012). Cycles and the qualitative evolution of chemical systems. PloS ONE, 7(10), e45772.

    Google Scholar 

  • Kreyssig, P., Wozar, C., Peter, S., Veloz, T., Ibrahim, B., & Dittrich, P. (2014). Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics, 30(17), i475–i481.

    Google Scholar 

  • Lacroix, V., Cottret, L., Thébault, P., & Sagot, M. F. (2008). An introduction to metabolic networks and their structural analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 5(4), 594–617.

    Google Scholar 

  • Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C., & Dieckmann, U. (2018). Complexity and stability of ecological networks: A review of the theory. Population Ecology, 60(4), 319–345.

    Google Scholar 

  • Lurgi, M., Montoya, D., & Montoya, J. M. (2016). The effects of space and diversity of interaction types on the stability of complex ecological networks. Theoretical Ecology, 9(1), 3–13.

    Google Scholar 

  • Mackey, G. W. (2013). Mathematical foundations of quantum mechanics. North Chelmsford: Courier Corporation.

    Google Scholar 

  • Matsumaru, N., Hinze, T., & Dittrich, P. (2011). Organization-oriented chemical programming of distributed artifacts. In Theoretical and technological advancements in nanotechnology and molecular computation: Interdisciplinary gains (pp. 240–258). IGI Global.

  • Matsumaru, N., Speroni di Fenizio, P., Centler, F., & Dittrich, P. (2006) On the evolution of chemical organizations. In Proceedings of the 7th German workshop of artificial life (pp. 135–146).

  • May, R. (1972). Will a large complex system be stable? Nature, 238, 413–414.

    Google Scholar 

  • May, R. (1973). Stability and complexity in model ecosystems (Vol. 6). Princeton: Princeton University Press.

    Google Scholar 

  • McCann, K. (2000). The diversitystability debate. Nature, 405(6783), 228–233.

    Google Scholar 

  • Melián, C. J., Bascompte, J., Jordano, P., & Krivan, V. (2009). Diversity in a complex ecological network with two interaction types. Oikos, 118(1), 122–130.

    Google Scholar 

  • Melkikh, A. V., & Khrennikov, A. (2015). Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes. Progress in Biophysics and Molecular Biology, 119(2), 137–161.

    Google Scholar 

  • Montoya, J., Pimm, S., & Solé, R. (2006). Ecological networks and their fragility. Nature, 442(7100), 259–264.

    Google Scholar 

  • Olff, H., Alonso, D., Matty, P., Berg, B., Eriksson, K., Loreau, M., et al. (2009). Parallel ecological networks in ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 1755–1779.

    Google Scholar 

  • Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245.

    Google Scholar 

  • Peter, S., & Dittrich, P. (2011). On the relation between organizations and limit sets in chemical reaction systems. Advances in Complex Systems, 14(01), 77–96.

    Google Scholar 

  • Peter, S., Veloz, T., & Dittrich, P. (2011). Feasibility of organizations—A refinement of chemical organization theory with application to p systems. In Membrane computing (pp. 325–337). Berlin: Springer

  • Pilosof, S., Porter, M. A., Pascual, M., & Kéfi, S. (2017). The multilayer nature of ecological networks. Nature Ecology & Evolution, 1(4), 0101.

    Google Scholar 

  • Pimm, S. (1984). The complexity and stability of ecosystems. Nature, 307(5949), 321–326.

    Google Scholar 

  • Pimm, S. L. (1982). Food webs. In Food webs (pp. 1–11). Dordrecht: Springer.

    Google Scholar 

  • Piron, C. (1976). On the foundations of quantum physics. In Quantum mechanics, determinism, causality, and particles (pp. 105–116). Dordrecht: Springer.

    Google Scholar 

  • Razeto-Barry, P. (2012). Autopoiesis 40 years later. A review and a reformulation. Origins of Life and Evolution of Biospheres, 42(6), 543–567.

    Google Scholar 

  • Real, R., Barbosa, A. M., & Bull, J. W. (2016). Species distributions, quantum theory, and the enhancement of biodiversity measures. Systematic Biology, 66(3), 453–462.

    Google Scholar 

  • Schuster, S., Dandekar, T., & Fell, D. A. (1999). Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends in Biotechnology, 17(2), 53–60.

    Google Scholar 

  • Speroni di Fenizio, P. (2015). The lattice of chemical organisations. In Artificial Life (pp. 242–248).

  • Strogatz, S. (2014). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Boulder: Westview Press.

    Google Scholar 

  • Svozil, K. (2009). Quantum scholasticism: On quantum contexts, counterfactuals, and the absurdities of quantum omniscience. Information Sciences, 179(5), 535–541.

    Google Scholar 

  • Thébault, E., & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329(5993), 853–856.

    Google Scholar 

  • Varela, F., Maturana, H., & Uribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems, 5(4), 187–196.

    Google Scholar 

  • Velegol, D., Suhey, P., Connolly, J., Morrissey, N., & Cook, L. (2018). Chemical game theory. Industrial & Engineering Chemistry Research, 57(41), 13593–13607.

    Google Scholar 

  • Veloz, T. (2010). A computational study of algebraic chemistry. M.Sc. thesis. University of Chile

  • Veloz, T. (2013). Teoría de organizaciones qumicas: Un lenguaje formal para la autopoiesis y el medio ambiente. In P. Razeto-Barry & R. Ramos-Jiliberto (Eds.), Autopoiesis. Un concepto vivo. Editorial Nueva Civilizacin (pp. 229–245). Chile: Santiago.

    Google Scholar 

  • Veloz, T., Bassi, A., & Maldonado, P. (2019). A novel and efficient approach to compute closure in reaction networks. Soft Computing (submitted).

  • Veloz, T., & Flores, D. (2019). A reaction network model of endosymbiotic interactions. Soft-Computing (submitted).

  • Veloz, T., & Razeto-Barry, P. (2017a). Reaction networks as a language for systemic modeling: Fundamentals and examples. Systems, 5(1), 11.

    Google Scholar 

  • Veloz, T., & Razeto-Barry, P. (2017b). Reaction networks as a language for systemic modeling: On the study of structural changes. Systems, 5(2), 30.

    Google Scholar 

  • Veloz, T., Razeto-Barry, P., Dittrich, P., & Fajardo, A. (2014). Reaction networks and evolutionary game theory. Journal of Mathematical Biology, 68(1–2), 181–206.

    Google Scholar 

  • Veloz, T., Reynaert, B., Rojas, D., & Dittrich, P. (2011) A decomposition theorem in chemical organizations. In Proceedings of European conference in artificial life. LNCS Springer

Download references

Acknowledgements

This work was supported by the postdoctoral Project Fondecyt 3170122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Veloz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veloz, T. The Complexity–Stability Debate, Chemical Organization Theory, and the Identification of Non-classical Structures in Ecology. Found Sci 25, 259–273 (2020). https://doi.org/10.1007/s10699-019-09639-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-019-09639-y

Keywords

Navigation