Skip to main content
Log in

Diagrams in Mathematics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

In the last few decades there has been a revival of interest in diagrams in mathematics. But the revival, at least at its origin, has been motivated by adherence to the view that the method of mathematics is the axiomatic method, and specifically by the attempt to fit diagrams into the axiomatic method, translating particular diagrams into statements and inference rules of a formal system. This approach does not deal with diagrams qua diagrams, and is incapable of accounting for the role diagrams play as means of discovery and understanding. Alternatively, this paper purports to show that the view that the method of mathematics is the analytic method is capable of dealing with diagrams qua diagrams, and of accounting for such role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allwein, G., & Barwise, J. (Eds.). (1996). Logical reasoning with diagrams. Oxford: Oxford University Press.

    Google Scholar 

  • Barwise, J., & Etchemeny, J. (1996a). Visual information and valid reasoning. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 3–25). Oxford: Oxford University Press.

    Google Scholar 

  • Barwise, J., & Etchemeny, J. (1996b). Heterogeneous logic. In G. Allwein & J. Barwise (Eds.), Logical reasoning with diagrams (pp. 179–200). Oxford: Oxford University Press.

    Google Scholar 

  • Bourbaki, N. (1949). Foundations of mathematics for the working mathematician. The Journal of Symbolic Logic, 14, 1–8.

    Article  Google Scholar 

  • Bourbaki, N. (1950). The architecture of mathematics. The American Mathematical Monthly, 57, 221–232.

    Article  Google Scholar 

  • Bourbaki, N. (1968). Theory of sets. Reading: Addison-Wesley.

    Google Scholar 

  • Bråting, K., & Pejlare, J. (2008). Visualization in mathematics. Erkenntnis, 68, 345–358.

    Article  Google Scholar 

  • Bueno, O. (2016). Visual reasoning in science and mathematics. In L. Magnani & C. Casadio (Eds.), Model-based reasoning in science and technology (pp. 3–19). Cham: Springer.

    Chapter  Google Scholar 

  • Byers, W. (2007). How mathematicians think: Using ambiguity, contradiction, and paradox to create mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Carter, J. (2017). Exploring the fruitfulness of diagrams in mathematics. Synthese. https://doi.org/10.1007/s11229-017-1635-1.

    Google Scholar 

  • Cellucci, C. (2009). The universal generalization problem. Logique & Analyse, 205, 3–20.

    Google Scholar 

  • Cellucci, C. (2013). Rethinking logic: Logic in relation to mathematics, evolution and method. Cham: Springer.

    Book  Google Scholar 

  • Cellucci, C. (2017). Rethinking knowledge: The heuristic view. Cham: Springer.

    Book  Google Scholar 

  • Davies, E. B. (2008). Interview. In V. F. Hendricks & H. Leitgeb (Eds.), Philosophy of mathematics: 5 questions (pp. 87–99). New York: Automatic Press/VIP.

    Google Scholar 

  • Dieudonné, J. (1961). New thinking in school mathematics. The Royaumont Seminar November 23–December 3, 1959 (pp. 31–46). Paris: Organisation for European Economic Co-Operation.

    Google Scholar 

  • Dieudonné, J. (1969). Foundations of modern analysis. New York: Academic Press.

    Google Scholar 

  • Dieudonné, J. (1987). Mathematics: The music of reason. Berlin: Springer.

    Google Scholar 

  • Epstein, R. L. (2011). Classical mathematical logic: The semantic foundations of logic. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Feferman, S. (2012). And so on…: reasoning with infinite diagrams. Synthese, 186, 371–386.

    Article  Google Scholar 

  • Ferreirós, J. (2016). Mathematical knowledge and the interplay of practices. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Giaquinto, M. (2008). Visualizing in mathematics. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 22–42). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Hammer, E. (1995). Logic and visual information. Stanford: CSLI Publications.

    Google Scholar 

  • Hanna, G., & Sidoli, N. (2007). Visualization and proof: a brief survery of philosophical perspectives. Mathematics Education, 39, 73–78.

    Google Scholar 

  • Hersh, R. (1979). Some proposals for reviving the philosophy of mathematics. Advances in Mathematics, 31, 31–50.

    Article  Google Scholar 

  • Hersh, R. (1997). What is mathematics, really? Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (1967a). On the infinite. In J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic 1879–1931 (pp. 369–392). Cambridge: Harvard University Press.

    Google Scholar 

  • Hilbert, D. (1967b). The foundations of mathematics. In J. van Heijenoort (Ed.), From Frege to Gödel: A source book in mathematical logic 1879–1931 (pp. 464–479). Cambridge: Harvard University Press.

    Google Scholar 

  • Hilbert, D. (1980). Letter to Frege, 29 December 1899. In G. Frege (Ed.), Philosophical and mathematical correspondence (pp. 38–41). Oxford: Blackwell.

    Google Scholar 

  • Hilbert, D. (1987). Grundlagen der Geometrie. Stuttgart: Teubner.

    Google Scholar 

  • Hilbert, D. (1996a). The new grounding of mathematics: First report. In W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1115–1134). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (1996b). Logic and the knowledge of nature. In W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1157–1165). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (1996c). The grounding of elementary number theory. In W. Ewald (Ed.), From Kant to Hilbert: A source book in the foundations of mathematics (Vol. 2, pp. 1149–1157). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (2000). Mathematical problems. In J. Gray (Ed.), The Hilbert challenge (pp. 240–282). Oxford: Oxford University Press.

    Google Scholar 

  • Hilbert, D. (2004a). Die Grundlagen der Geometrie. In M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (pp. 72–123). Berlin: Springer.

    Google Scholar 

  • Hilbert, D. (2004b). Grundlagen der Geometrie. In M. Hallett & U. Majer (Eds.), David Hilbert’s lectures on the foundations of geometry 1891–1902 (pp. 540–602). Berlin: Springer.

    Google Scholar 

  • Kant, I. (1992). Lectures on logic. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kant, I. (1998). Critique of pure reason. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kant, I. (2002). Theoretical philosophy after 1781. Cambridge: Cambridge University Press.

    Google Scholar 

  • Klein, F. (2004). Elementary mathematics from an advanced standpoint: Geometry. Mineola: Dover.

    Google Scholar 

  • Leibniz, G. W. (1965). Die Philosophischen Schriften. Hildesheim: Olms.

    Google Scholar 

  • Locke, J. (1824). Works. London: Rivington.

    Google Scholar 

  • Mac Lane, S. (1986). Mathematics: Form and function. New York: Springer.

    Book  Google Scholar 

  • Meikle, L. I., & Fleuriot, J. D. (2003). Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In D. Basin & B. Wolff (Eds.), Theorem proving in higher order logics (pp. 319–334). Berlin: Springer.

    Chapter  Google Scholar 

  • Menzler-Trott, E. (2007). Logic’s lost genius: The life of Gerhard Gentzen. Providence: American Mathematical Society.

    Google Scholar 

  • Miller, N. (2012). On the inconsistency of Mumma’s Eu. Notre Dame journal of Formal Logic, 53, 27–54.

    Article  Google Scholar 

  • Mumma, J. (2006). Intuition formalized: Ancient and modern methods of proof in elementary geometry. Ph.D. thesis, Carnegie Mellon University.

  • Naylor, A. W., & Sell, G. R. (2000). Linear operator theory in engineering and science. Berlin: Springer.

    Google Scholar 

  • Netz, R. (1999). The shaping of deduction in Greek mathematics: A study in cognitive history. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Post, E. L. (1965). Absolutely unsolvable problems and relatively undecidable propositions. Account of an anticipation. In M. Davis (Ed.), The undecidable (pp. 340–433). New York: Raven Press.

    Google Scholar 

  • Rathjen, M. (2015). Goodstein’s theorem revisited. In R. Kahle & M. Rathjen (Eds.), Gentzen’s centenary: The quest for consistency (pp. 229–242). Cham: Springer.

    Chapter  Google Scholar 

  • Robič, B. (2015). The foundations of computability theory. Berlin: Springer.

    Book  Google Scholar 

  • Russell, B. (1993). Introduction to mathematical philosophy. Mineola: Dover.

    Google Scholar 

  • Russell, B. (2010). Principles of mathematics. Abingdon: Routledge.

    Google Scholar 

  • Shin, S. (1994). The logical status of diagrams. Cambridge: Cambridge University Press.

    Google Scholar 

  • Starikova, I. (2010). Why do mathematicians need different ways of presenting mathematical objects? The case of Cayley graphs. Topoi, 29, 41–51.

    Article  Google Scholar 

  • Tennant, N. (1986). The withering away of formal semantics? Mind & Language, 1, 302–318.

    Article  Google Scholar 

  • Wiedijk, F. (2008). Formal proof: Getting started. Notices of the American Mathematical Society, 55, 1408–1414.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Otávio Bueno, Jessica Carter, Miriam Franchella, Gila Hanna, Robert Thomas, Fabio Sterpetti, Francesco Verde, and two anonymous reviewers for their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cellucci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cellucci, C. Diagrams in Mathematics. Found Sci 24, 583–604 (2019). https://doi.org/10.1007/s10699-019-09583-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-019-09583-x

Keywords

Navigation