Skip to main content
Log in

Thinking Dynamically About Biological Mechanisms: Networks of Coupled Oscillators

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Explaining the complex dynamics exhibited in many biological mechanisms requires extending the recent philosophical treatment of mechanisms that emphasizes sequences of operations. To understand how nonsequentially organized mechanisms will behave, scientists often advance what we call dynamic mechanistic explanations. These begin with a decomposition of the mechanism into component parts and operations, using a variety of laboratory-based strategies. Crucially, the mechanism is then recomposed by means of computational models in which variables or terms in differential equations correspond to properties of its parts and operations. We provide two illustrations drawn from research on circadian rhythms. Once biologists identified some of the components of the molecular mechanism thought to be responsible for circadian rhythms, computational models were used to determine whether the proposed mechanisms could generate sustained oscillations. Modeling has become even more important as researchers have recognized that the oscillations generated in individual neurons are synchronized within networks; we describe models being employed to assess how different possible network architectures could produce the observed synchronized activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aton S. J., Colwell C. S., Harmar A. J., Waschek J., Herzog E. D. (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neuroscience 8: 476–483

    Google Scholar 

  • Bechtel W. (2009) Generalization and discovery by assuming conserved mechanisms: Cross species research on circadian oscillators. Philosophy of Science 76: 762–773

    Google Scholar 

  • Bechtel W., Abrahamsen A. (2005) Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences 36: 421–441

    Article  Google Scholar 

  • Bechtel W., Abrahamsen A. (2009) Decomposing, recomposing, and situating circadian mechanisms: Three tasks in developing mechanistic explanations. In: Leitgeb H., Hieke A. (Eds.) Reduction and elimination in philosophy of mind and philosophy of neuroscience. Ontos Verlag, Frankfurt, pp 173–186

    Google Scholar 

  • Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A, 41, 321–333.

    Google Scholar 

  • Bechtel W., Abrahamsen A. (2011) Complex biological mechanisms: Cyclic, oscillatory, and autonomous. In: Hooker C. A. (Ed.) Philosophy of complex systems. Handbook of the philosophy of science. Elsevier, New York

    Google Scholar 

  • Bechtel, W., & Richardson, R. C. (1993/2010). Discovering complexity: Decomposition and localization as strategies in scientific research. Cambridge, MA: MIT Press. 1993 edition published by Princeton University Press.

  • Bernard C. (1865) An introduction to the study of experimental medicine. Dover, New York

    Google Scholar 

  • Bernard S., Gonze D., Čajavec B., Herzel H., Kramer A. (2007) Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus. PLoS Computational Biology 3(4): e68

    Article  Google Scholar 

  • Cannon W. B. (1929) Organization of physiological homeostasis. Physiological Reviews 9: 399–431

    Google Scholar 

  • Chance B., Estabrook R. W., Ghosh A. (1964) Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proceedings of the National Academy of Sciences 51(6): 1244–1251

    Article  Google Scholar 

  • de la Iglesia H. O., Cambras T., Schwartz W. J., Díez-Noguera A. (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Current Biology 14(9): 796–800

    Article  Google Scholar 

  • Erdös P., Rényi A. (1960) On the evolution of random graphs. Proceedings of the Mathematical Institute of the Hungarian Academy of Sciences 5: 17–61

    Google Scholar 

  • Ermentrout G. B., Kopell N. (1984) Frequency plateaus in a chain of weakly coupled oscillators. 1. SIAM Journal on Mathematical Analysis 15(2): 215–237

    Article  Google Scholar 

  • Felleman D. J., van Essen D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1–47

    Article  Google Scholar 

  • Goldbeter A. (1995) A model for circadian oscillations in the Drosophila Period protein (PER). Proceedings of the Royal Society of London. B: Biological Sciences 261(1362): 319–324

    Article  Google Scholar 

  • Gonze D., Bernard S., Waltermann C., Kramer A., Herzel H. (2005) Spontaneous synchronization of coupled circadian oscillators. Biophysical Journal 89(1): 120–129

    Article  Google Scholar 

  • Goodwin B. C. (1965) Oscillatory behavior in enzymatic control processes. Advances in Enzyme Regulation 3: 425–428

    Article  Google Scholar 

  • Griffith J. S. (1968) Mathematics of cellular control processes I. Negative feedback to one gene. Journal of Theoretical Biology 20(2): 202–208

    Article  Google Scholar 

  • Hardin P. E., Hall J. C., Rosbash M. (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343(6258): 536–540

    Article  Google Scholar 

  • Herzog E. D., Aton S. J., Numano R., Sakaki Y., Tei H. (2004) Temporal precision in the mammalian circadian system: A reliable clock from less reliable neurons. Journal of Biological Rhythms 19(1): 35–46

    Article  Google Scholar 

  • Humphries M. D., Gurney K., Prescott T. J. (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proceedings of the Royal Society B: Biological Sciences 273(1585): 503–511

    Article  Google Scholar 

  • Konopka R. J., Benzer S. (1971) Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences (USA) 89: 2112–2116

    Article  Google Scholar 

  • Kopell N., Ermentrout G. B. (1986) Symmetry and phaselocking in chains of weakly coupled oscillators. Communications on Pure and Applied Mathematics 39(5): 623–660

    Article  Google Scholar 

  • Leloup J.-C., Goldbeter A. (1998) A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. Journal of Biological Rhythms 13(1): 70–87

    Article  Google Scholar 

  • Leloup J.-C., Goldbeter A. (2003) Toward a detailed computational model for the mammalian circadian clock. Proceedings of the National Academy of Sciences 100(12): 7051–7056

    Article  Google Scholar 

  • Leloup J.-C., Goldbeter A. (2004) Modeling the mammalian circadian clock: Sensitivity analysis and multiplicity of oscillatory mechanisms. Journal of Theoretical Biology 230(4): 541–562

    Article  Google Scholar 

  • Machamer P., Darden L., Craver C. F. (2000) Thinking about mechanisms. Philosophy of Science 67: 1–25

    Article  Google Scholar 

  • Mayr O. (1970) The origins of feedback control. MIT Press, Cambridge, MA

    Google Scholar 

  • Moore R. Y., Eichler V. B. (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Research 42: 201–206

    Article  Google Scholar 

  • Ohta H., Yamazaki S., McMahon D. G. (2005) Constant light desynchronizes mammalian clock neurons. Nature Neuroscience 8: 267–269

    Article  Google Scholar 

  • Ruiz-Mirazo K., Peretó J., Moreno A. (2004) A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere 34: 323–346

    Article  Google Scholar 

  • Schwartz M. D., Wotus C., Liu T., Friesen W. O., Borjigin J., Oda G.A. et al (2009) Dissociation of circadian and light inhibition of melatonin release through forced desynchronization in the rat. Proceedings of the National Academy of Sciences 106(41): 17540–17545

    Article  Google Scholar 

  • Song S., Sjöström P. J., Reigl M., Nelson S., Chklovskii D. B. (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology 3(3): e68

    Article  Google Scholar 

  • Sporns O., Zwi J. D. (2004) The small world of the cerebral cortex. Neuroinformatics 2(2): 145–162

    Article  Google Scholar 

  • Strogatz S. H. (2001) Exploring complex networks. Nature 410(6825): 268–276

    Article  Google Scholar 

  • Thagard P. (2003) Pathways to biomedical discovery. Philosophy of Science 70: 235–254

    Article  Google Scholar 

  • To T.-L., Henson M. A., Herzog E. D., Doyle F. J. III (2007) A molecular model for intercellular synchronization in the mammalian circadian clock. Biophysical Journal 92(11): 3792–3803

    Article  Google Scholar 

  • vanderLeest H. T., Houben T., Michel S., Deboer T., Albus H., Vansteensel M. J. et al (2007) Seasonal encoding by the circadian pacemaker of the SCN. Current Biology 17(5): 468–473

    Article  Google Scholar 

  • Vasalou C., Herzog E. D., Henson M. A. (2009) Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus. Journal of Biological Rhythms 24(3): 243–254

    Article  Google Scholar 

  • Watts D., Strogratz S. (1998) Collective dynamics of small worlds. Nature 393: 440–442

    Article  Google Scholar 

  • Welsh D. K., Logothetis D. E., Meister M., Reppert S. M. (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4): 697–706

    Article  Google Scholar 

  • Wilson E. O. (1998) Consilience: The unity of knowledge. Knopf, New York

    Google Scholar 

  • Wimsatt W. C. (1976) Reductionism, levels of organization, and the mind-body problem. In: Globus G., Maxwell G., Savodnik I. (Eds.) Consciousness and the brain: A scientific and philosophical inquiry. Plenum Press, New York, pp 202–267

    Google Scholar 

  • Winfree A. T. (1967) Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology 16(1): 15–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Bechtel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechtel, W., Abrahamsen, A.A. Thinking Dynamically About Biological Mechanisms: Networks of Coupled Oscillators. Found Sci 18, 707–723 (2013). https://doi.org/10.1007/s10699-012-9301-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-012-9301-z

Keywords

Navigation