Skip to main content
Log in

Does Species Evolution Follow Scale Laws? First Applications of the Scale Relativity Theory to Fossil and Living-beings

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We have demonstrated, using the Cantor dust method, that the statistical distribution of appearance and disappearance of rodents species (Arvicolid rodent radiation in Europe) follows power laws strengthening the evidence for a fractal structure set. Self-similar laws have been used as model for the description of a huge number of biological systems. With Nottale we have shown that log-periodic behaviors of acceleration or deceleration can be applied to branching macroevolution, to the time sequences of major evolutionary leaps (global life tree, sauropod and theropod dinosaurs postural structures, North American fossil equids, rodents, primates and echinoderms clades and human ontogeny). The Scale-Relativity Theory has others biological applications from linear with fractal behavior to non-linear and from classical mechanics to quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre C., Le Mouel J. L., Provost A. (1982) Scaling rules in rock fracture and possible implications for earthquake prediction. Nature 297: 47–49

    Article  Google Scholar 

  • Allen J. C., Schaeffer W. M., Rosko D. (1993) Chaos reduces species extinction by amplifying local population noise. Nature 364: 229–232

    Article  Google Scholar 

  • Anthony J. (1952) La brisure de la base du crâne chez les Primates. Annales de Paléontologie 38: 71–79

    Google Scholar 

  • Arnéodo A., Sornette D. (1984) Monte Carlo random walk experiments as a test of chaotic orbits of maps of the interval. Physical Review Letters 52: 1857–1860

    Article  Google Scholar 

  • Arthuis M., Dulac O., Ponsot G., Pinsard N., Mancini J. (1998) Neurologie pédiatrique. Flammarion, Paris, pp 1–74

    Google Scholar 

  • Bak P. (1996) How nature works: The science of self-organized criticality. New York and Oxford University Press, Copernicus, pp 1–232

    Google Scholar 

  • Benton M. J. (1985) The Red Queen put to the test. Nature 313: 734–735

    Article  Google Scholar 

  • Bergé P., Pomeau Y., Vidal C. (1984) L’ordre dans le chaos. Hermann, Paris, pp 1–353

    Google Scholar 

  • Boettiger A., Ermentrout B., Oster G. (2009) The neural origins of shell structure and pattern in aquatic mollusks. Proceedings of the National Academy of Sciences 106: 6837–6842

    Article  Google Scholar 

  • Bornholdt S. (2003) The dynamics of large biological systems: A statistical physics view of macroevolution. In: Crutchfield J. P., Schuster P. (eds) Evolutionary Dynamics: Exploring the Interplay of Selection, Accident, Neutrality and Function. Oxford University Press, Oxford, pp 65–78

    Google Scholar 

  • Bornholdt S., Sneppen K. (1998) Neutral mutations and punctuated equilibrium in evolving genetic networks. Physical Review Letters 81: 236–239

    Article  Google Scholar 

  • Bourrillon A. (2000) Pédiatrie. Masson, Paris, pp 65–78

    Google Scholar 

  • Brézin E., Wallace D. J., Wilson K. G. (1972) Feynman-graph expansion for the equation of state near the critical point. Physical Review Letters 29(9): 591–594

    Article  Google Scholar 

  • Buldyrev S. V., Goldberger A. L., Havlin S., Stanley H. E., Peng C.-K. (1994) Fractals in biology and medicine: From DNA to the heartbeat. In: Armin B., Halvin S. (eds) Fractals in Biology and Medicine, 3. Birkhaüser verlag, Basel, pp 49–87

    Google Scholar 

  • Burlando B. (1990) The fractal dimension of taxonomic systems. Journal of Theorical Biology 146: 99–114

    Article  Google Scholar 

  • Burlando B. (1993) The fractal geometry of evolution. Journal of Theorical Biology 163: 161–172

    Article  Google Scholar 

  • Cash R., Chaline J., Nottale L., Grou P (2002) Développement humain et loi log-périodique. Comptes Rendus Biologies 325: 1–7

    Article  Google Scholar 

  • Chaline J. (1987) Arvicolid data (Arvicolidae, Rodentia) and evolutionary concepts. Evolutionary Biology 21: 237–310

    Google Scholar 

  • Chaline J. (1990) Paleontology of vertebrates. Springer, New York, pp 1–196

    Google Scholar 

  • Chaline J. (1998) Vers une approche globale de l’évolution des Hominidés. Le Point sur... Comptes Rendus Académie des Sciences de Paris 326: 307–318

    Google Scholar 

  • Chaline J. (2006) Quoi de neuf depuis Darwin? La théorie de l’évolution dans tous ses états. Ellipses, Paris, pp 1–479

    Google Scholar 

  • Chaline J., Brunet-Lecomte P. (1992) Anatomie de la radiation européenne des Arvicolidés (Rodentia): un test quantifié du modèle des Equilibres/Déséquilibres ponctués. Comptes Rendus Académie des Sciences de Paris II 314: 251–256

    Google Scholar 

  • Chaline J., Brunet-Lecomte P., Montuire S., Viriot L., Courant F. (1999a) Anatomy of the Arvicolid radiation (Rodentia): Palaeogeographical history and evolutionary data. Annales Zoologici Fennici 36: 239–267

    Google Scholar 

  • Chaline J., David B., Magniez-Jannin F., Dambricourt Malassé A., Marchand D., Courant F., Millet J. J. (1998) Quantification de l’évolution morphologique du crâne des Hominidés et hétérochronies. Comptes Rendus de l’Académie des Sciences de Paris 326: 291–298

    Google Scholar 

  • Chaline J., Laurin B. (1986) Phyletic gradualism in a European Plio-Pleistocene Mimomys lineage (Arvicolidae, Rodentia). Paleobiology 12: 203–216

    Google Scholar 

  • Chaline J., Laurin B., Brunet-Lecomte P., Viriot L. (1993) Morphological trends and rates of evolution in Arvicolids (Arvicolidae, Rodentia): Towards a punctuated equilibria/disequilibria model. In: Chaline J., Werdelin L. (eds) Modes and Tempos of Evolution in the Quaternary, Quaternary International. Pergamon Press, Oxford, pp 27–39

    Google Scholar 

  • Chaline J., Nottale L., Grou P. (1999b) L’arbre de la vie a-t-il une structure fractale?. Comptes Rendus Académie des Sciences de Paris 328: 717–726

    Article  Google Scholar 

  • Dambricourt-Malassé A. (1993) Continuity and discontinuity during hominization. Quaternary International 29: 86–98

    Google Scholar 

  • Dambricourt-Malassé A. (1996) Nouveau regard sur l’origine de l’homme. La Recherche 286: 46–54

    Google Scholar 

  • Dambricourt-Malassé A., Deshayes M. J. (1992) Modeling of the craniofacial architecture during ontogenesis and phylogenesis. In: Berthoz A., Graf W., Vidal P. P. (eds) The Head-neck Sensory-Motor System. Oxford University Press, New York, Oxford, pp 36–46

    Google Scholar 

  • Dambricourt-Malassé A., Deshayes M. J., Marchand D., Chaline J. (1999) A solution to the human paradox: Fundamental ontogenies. Human Evolution 14: 277–300

    Article  Google Scholar 

  • David B., Mooi R. (1999) Comprendre les échinodermes : la contribution du modèle extraxial-axial. Bulletin de la Société Géologique de France 170: 91–101

    Google Scholar 

  • Dawkins R. (1986) The blind watcher. Longman Scientific and Technical, Harlow, Essex, pp 1–380

    Google Scholar 

  • Delattre, A. (1958). La formation du crâne humain. In Les processus de l’Hominisation (pp. 37–57). Colloque International du C.N.R.S Paris.

  • Delattre A., Fenart R. (1954) Rotation occipitale positive et négative. Comptes Rendus de l’Académie des Sciences de Paris 239: 676–678

    Google Scholar 

  • Delattre A., Fenart R. (1956) L’hominisation du crâne est-elle terminée?. Comptes Rendus de l’Académie des Sciences de Paris 243: 429–431

    Google Scholar 

  • Delattre, A., & Fenart, R. (1960). L’hominisation du crâne (pp. 1–421). Paris: C.N.R.S. Ed.

  • Delsemme A. (1994) Les origines cosmiques de la vie. Flammarion, Paris, pp 1–382

    Google Scholar 

  • Deniker J. (1886) Recherches anatomiques et embryologiques sur les singes anthropoïdes. Fœtus de gorille et de gibbon comparés aux fœtus humains et aux anthropoïdes jeunes et adultes. Archives de Zoologie Expérimentale de Genève: 2: 1–265

    Google Scholar 

  • Deshayes M.-J. (1986) Croissance cranio-faciale et orthodontie. Masson, Paris, pp 1–87

    Google Scholar 

  • Deshayes M.-J. (1988) La biodynamique cranio-faciale. Revue d’Orthopédie dento-faciale 22: 283–298

    Article  Google Scholar 

  • Deshayes M.-J. (1991) Reconsidération de la croissance cranio-faciale au cours de l’ontogenèse et de l’évolution. Implications pour les traitements orthopédiques. Revue d’Orthopédie dento-faciale 25: 353–365

    Article  Google Scholar 

  • Dubois J. (1995) La Dynamique non Linéaire en Physique du Globe. Masson, Paris, pp 1–265

    Google Scholar 

  • Dubois, J., & Chaline, J. (2006). Le monde des fractales. La vraie géométrie de la nature. Ellipses, Paris, pp. 1–312.

  • Dubois J., Chaline J., Brunet-Lecomte P. (1992) Spéciation, extinction et attracteurs étranges. Comptes Rendus Académie des Sciences de Paris 31: 1827–1833

    Google Scholar 

  • Dubois J., Cheminée J.L. (1988) Application d’une analyse fractale à l’étude des cycles éruptifs du Piton de la Fournaise (La Réunion): modèle d’une poussière de Cantor. Comptes Rendus Académie des Sciences de Paris 307: 1723–1729

    Google Scholar 

  • Dubois J., Cheminée J.L. (1993) Les cycles éruptifs du Piton de la Fournaise: analyse fractale, attracteurs, aspects déterministes. Bulletin de la Société Géologique de France 164: 3–16

    Google Scholar 

  • Encha-Razavi F., Escudier E. (2001) Embryologie humaine: de la molécule à la clinique. Masson, Paris, pp 1–307

    Google Scholar 

  • Fejfar O., Heinrich W.-D. (1990) Proposed biostratigraphical division of the European continental Neogene and Quaternary based on muroid rodents (Rodentia: mammalia). In: Fejfar O., Heinrich W.D. (eds) International Symposium Evolution, Phylogeny and Biostratigraphy of Arvicolids. Geological Survey, Prague, pp 115–124

    Google Scholar 

  • Fowler, D. R., Meinhardt, H., & Przemyslaw Prusinkiewicz, P. (1992). Modeling seashells. In Computer graphics (Vol. 26, pp. 379–387), ACM SIGGRAPH, New York.

  • Garstang W. (1922) The theory of recapitulation: A critical restament of the biogenetic law. Zoological Journal of the Linnean Society 35: 81–108

    Article  Google Scholar 

  • Graham R. W. (1985) Diversity in community structure of the late Pleistocene mammal fauna of North America. Acta Zoologica Fennica 170: 18–192

    Google Scholar 

  • Graham R. W., Lundelius E. L. (1984) Coevolutionary disequilibrium and pleistocene extinctions. In: Martin P. S., Klein R. G. (eds) Quaternary Extinctions. A Prehistoric Revolution. University Arizona Press, Arizona, pp 223–249

    Google Scholar 

  • Graham R. W., Mead J. I. (1987) Environmental fluctuations and evolution of mammalian faunas during the last deglaciation in North America. In: Ruddiman W. F., Wright H. E. Jr. (eds) North America and Adjacent Oceans During the Last Deglaciation. Geological Society of America K-3, Boulder, pp 371–402

    Google Scholar 

  • Grassé P.-P. (1978) Biologie moléculaire, mutagenèse et évolution. Masson, Paris, pp 1–117

    Google Scholar 

  • Grou, P., Nottale, L., & Chaline, J. (2004). Log-periodic laws applied to geosciences. In Zona Arqueologica, Miscelanea en homenaje a Emiliano Aguirre (pp. 230–237). Museo Arquelogico Regional, Madrid, IV, Arqueologia.

  • Hanski I., Turchin P., Korpimäki E., Henttonen H. (1993) Population oscillations of boreal rodents: Regulation by mustelid predators leads to chaos. Nature 364: 232–235

    Article  Google Scholar 

  • Hartenberger J.-L. (1998) Description de la radiation des Rodentia (Mammalia) du Paléocène supérieur au Miocène; incidences phylogénétiques. Comptes Rendus Académie des Sciences de Paris 316(II): 439–444

    Google Scholar 

  • Hokr, Z. (1951). Methoda kvantitativniho stanoveni klimatu ve ctvrtohorach podle ssavcichspolenstev (Vol. 18, pp. 209–219). Prague: Vestnik Ustredniho Ustavu Geologickeho.

  • Honacki, J. H., Kinman, K. E., Koeppl, J. W (eds) (1982) Mammal species of the world. Allen Press and Association of Systematics Collections, Lawrence, Kansas, pp 1–894

    Google Scholar 

  • Jona-Lasinio G. (1975) The renormalisation group: A probabilistic view. Il Nuevo Cimento 26: 99–119

    Article  Google Scholar 

  • Kauffman S. (1993) The origins of order: Self-organization and selection in evolution. Oxford University Press, Oxford, pp 1–709

    Google Scholar 

  • Kidwell S. M., Flessa K. W. (1996) The quality of the fossil record: Populations, species and communities. Annual Review of Earth and Planetary Sciences 24: 433–464

    Article  Google Scholar 

  • Kirchner J. W., Weil A. (1998) No fractals in extinction statistics. Nature 395: 337–338

    Article  Google Scholar 

  • Korth W. W. (1994) The tertiary record of rodents in North America. In: Stehli F. G., Jones D. S. (eds) Topics in geobiology. Plenum Press, New York, pp 239–247

    Google Scholar 

  • Larsen W. H. (1996) Embryologie humaine. De Broeck Université, Bruxelles, pp 1–479

    Google Scholar 

  • Mandelbrot B. B. (1975) Les objets fractals. Flammarion, Paris, pp 1–203

    Google Scholar 

  • Mandelbrot B. B. (1977) Fractals, form, chance and dimensions. Freeman, San Francisco, pp 1–460

    Google Scholar 

  • Mandelbrot B. B. (1982) The fractal geometry of nature. Freeman, San Francisco, pp 1–460

    Google Scholar 

  • Margulis L. (1981) Symbiosis in cell evolution 1st ed. Freeman, New York, pp 1–452

    Google Scholar 

  • Martin-Garin B., Lathuiliere B., Verrecchia E. P., Geister J. (2007) Use of fractal dimensions to quantify coral shape. Coral Reefs 26: 541–550

    Article  Google Scholar 

  • Meyer, F. (1947). L’accélération évolutive. Essai sur le rythme évolutif et son interprétation quantique (pp.1–67). Librairie des Sciences et des Arts, Paris.

  • Meyer F. (1954) Problématique de l’évolution. Presses Universitaires de France, France, pp 1–279

    Google Scholar 

  • Minelli A., Fusco G., Sartori S. (1991) Self-similarity in biological classifications. Biosystems 26: 89–97

    Article  Google Scholar 

  • Monod J. (1970) Le hasard et la nécessité. Seuil, Paris, pp 1–197

    Google Scholar 

  • Nauenberg M. (1975) Scaling representation for critical phenomena. Journal of Physics A: Mathematical and General 8: 925–928

    Article  Google Scholar 

  • Newman M. E. J. (1996) Self-organized criticality, evolution and the fossil extinction record. Proceeding of the Royal Society of London 263(B): 1605–1610

    Article  Google Scholar 

  • Newman M. E. J., Eble G. J. (1999a) Power spectra of extinction in the fossil record. Proceeding of the Royal Society of London 266(B): 1267–1270

    Article  Google Scholar 

  • Newman M. E. J., Eble G. J. (1999b) Decline in extinction rates and scale invariance in the fossil record. Paleobiology 25: 434–439

    Google Scholar 

  • Nottale L. (1993) Fractal space-time and microphysics: Towards a theory of scale relativity. World Scientific, Singapore, pp 1–333

    Google Scholar 

  • Nottale L. (1997) Scale relativity. In: Dubrulle B., Graner F., Sornette D. (eds) Scale invariance and beyond. EDP Sciences-Springer, New York, pp 249–261

    Google Scholar 

  • Nottale L., Chaline J., Grou P. (2000) Les arbres de l’évolution. Hachette Litterature, Paris, pp 1–379

    Google Scholar 

  • Nottale, L., Chaline, J., & Grou, P. (2002). In G. Losa, D. Merlini, T. Nonnenmacher & E. Weibel (Eds.), Fractals in biology and medicine, 3, Proceedings of third international Symposium (pp. 247–258). Ascona: Birkhäuser Verlag, 2000.

  • Nottale, L., Chaline, J., & Grou, P. (2009). Des fleurs pour Schrödinger. La relativité d’échelle et ses applications (pp. 1–421). Ellipses.

  • O’Rahily R. (1972) Guide of staging of human embryos. Anatomischer Anzeiger 130: 556–559

    Google Scholar 

  • Patterson R. T., Fowler A. D. (1996) Evidence of self organization in planktic foraminiferal evolution: Implications for interconnectedness of paleoecosystems. Geology 24: 215–218

    Article  Google Scholar 

  • Plotnick R. E., McKinney M. (1993) Evidence of self-organization in planktic foraminiferal evolution: Implications for interconnectedness of palaecosystems. Palaios 8: 202–212

    Article  Google Scholar 

  • Plotnick R. E., Sepkovski J. J. (2001) A multifractal model for originations and extinctions. Paleobiology 27: 26–139

    Article  Google Scholar 

  • Queiros-Condé D. (1999) Geometry of intermittency in fully developed turbulence. Comptes Rendus Académie des Sciences de Paris 327(IIb): 1385–1390

    Google Scholar 

  • Queiros-Condé D. (2000a) Principle of flux entropy conservation forspecies evolution. Comptes Rendus Académie des Sciences de Paris 330: 445–449

    Google Scholar 

  • Queiros-Condé D. (2000b) Entropic-skins model for fully developed turbulence. Comptes Rendus de l’Académie des Sciences de Paris 328(IIb): 541–546

    Google Scholar 

  • Sapoval B. (1997) Universalités et fractales. Flammarion, Paris, pp 1–275

    Google Scholar 

  • Sereno P. C. (1999) The evolution of dinosaurs. Science 284: 2137–2147

    Article  Google Scholar 

  • Schlesinger M. F., West B. J. (1991) Complex fractal dimension of the bronchial tree. Physical Review Letters 67: 2106–2108

    Article  Google Scholar 

  • Sibani P., Schmidt M., Alstroem P. (1998) Evolution and extinction dynamics in rugged fitness landscapes. International Journal of Modern Physics 12(b): 361–391

    Google Scholar 

  • Sneppen K., Bak P., Flyvbjerg H., Jensen M. H. (1995) Evolution as a self-organized critical phenomenon. Proceedings of the National Academy of Sciences USA 92: 5209–5213

    Article  Google Scholar 

  • Solé R. V., Manrubia S. C., Benton M., Bak P. (1997) Self-similarity of extinction statistics in the fossil record. Nature 388: 764–767

    Article  Google Scholar 

  • Sornette D. (1998) Discrete scale invariance and complex dimensions. Physics Reports 297: 239–270

    Article  Google Scholar 

  • Sornette D. (2003) Why stock marquets crash? Critical events in complex finacial systems. Princeton University Press, Princeton, pp 1–421

    Google Scholar 

  • Sornette D., Arnéodo A. (1984) Chaos, pseudo-random number generators and the random walk problem. Journal de la Société de Physique de France 45: 1843–1857

    Article  Google Scholar 

  • Sornette A., Dubois J., Cheminée J. L., Sornette D. (1991) Are sequences of volcanic eruptions deterministically chaotic?. Journal of Geophysical Research 96: 931–945

    Article  Google Scholar 

  • Sornette D., Johansen A., Bouchaud J. P. (1996) Stock market crashes, precursors and replicas. Journal de Physique I France 6: 167–175

    Article  Google Scholar 

  • Sornette D., Sammis C. G. (1995) Complex critical exponenets from renormalization group theory of earthquakes: Implications for earthquake predictions. Journal de Physique I France 5: 607–619

    Article  Google Scholar 

  • Stenseth N. C., Maynard-Smith J. (1984) Coevolution in ecosystems: Red Queen evolution or stasis?. Evolution 38: 870–880

    Article  Google Scholar 

  • Van Valen L. (1973) A new evolutionary law. Evolutionary Theory 1: 1–30

    Google Scholar 

  • Verrecchia E. (1996) Morphometry of microstromatolites in calcrete laminar crusts and a fractal model of their growth. Mathematical Geology 28: 87–109

    Article  Google Scholar 

  • Wilson K. (1971) Renormalization group and critical phenomena. Physical Review B 4: 3174–3184

    Article  Google Scholar 

  • Wilson J. A., Sereno P. C. (1998) Early evolution and higher-level phylogeny of sauropod dinosaurs. Journal of Vertebrate Paleontology 2: 1–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Chaline.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaline, J. Does Species Evolution Follow Scale Laws? First Applications of the Scale Relativity Theory to Fossil and Living-beings. Found Sci 15, 279–302 (2010). https://doi.org/10.1007/s10699-010-9180-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-010-9180-0

Keywords

Navigation