Skip to main content
Log in

Quay crane scheduling problem with considering tidal impact and fuel consumption

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

This study investigates a quay crane scheduling problem with considering the impact of tides in a port and fuel consumption of ships. A mixed-integer nonlinear programming model is proposed. Some nonlinear parts in the model are linearized by approximation approaches. For solving the proposed model in large-scale problem instances, both a local branching based solution method and a particle swarm optimization based solution method are developed. Numerical experiments with some real-world like cases are conducted to validate the effectiveness of the proposed model and the efficiency of the proposed solution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bierwirth C, Meisel F (2009) A fast heuristic for quay crane scheduling with interference constraints. J Sched 12(4):345–360

    Article  MathSciNet  MATH  Google Scholar 

  • Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202(3):615–627

    Article  MathSciNet  MATH  Google Scholar 

  • Chen JH, Lee DH, Goh M (2014) An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem. Eur J Oper Res 232(1):198–208

    Article  MathSciNet  MATH  Google Scholar 

  • Daganzo CF (1989) The crane scheduling problem. Transp Res Part B 23(3):159–175

    Article  MathSciNet  Google Scholar 

  • Diesel MAN, Turbo S (2004) Basic principles of ship propulsion. http://www.manbw.com/files/news/filesof3859/P254-04-04.pdf. Accessed 2015.09.10

  • Du Y, Chen Q, Quan X, Long L, Fung RY (2011) Berth allocation considering fuel consumption and vessel emissions. Transp Res Part E 47(6):1021–1037

    Article  Google Scholar 

  • Du Y, Chen Q, Lam JSL, Xu Y, Cao JX (2015) Modeling the impacts of tides and the virtual arrival policy in berth allocation. Transp Sci 49(4):939–956

    Article  Google Scholar 

  • Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science, vol 1, pp 39–43

  • Fagerholt K (2004) A computer-based decision support system for vessel fleet scheduling experience and future research. Decis Support Syst 37(1):35–47

    Article  Google Scholar 

  • Fischetti M, Lodi A (2003) Local branching. Mathematical programming 98(1–3), 23–47

    Article  MathSciNet  MATH  Google Scholar 

  • Golias MM, Saharidis GK, Boile M, Theofanis S, Ierapetritou MG (2009) The berth allocation problem: optimizing vessel arrival time. Marit Econ Log 11(4):358–377

    Article  Google Scholar 

  • Guo P, Cheng W, Wang Y (2014) A modified generalized extremal optimization algorithm for the quay crane scheduling problem with interference constraints. Eng Optim 46(10):1411–1429

    Article  MathSciNet  Google Scholar 

  • Hu QM, Hu ZH, Du Y (2014) Berth and quay-crane allocation problem considering fuel consumption and emissions from vessels. Comput Ind Eng 70:1–10

    Article  Google Scholar 

  • Kim KH, Park YM (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156(3):752–768

    Article  MATH  Google Scholar 

  • Lee DH, Wang HQ, Miao L (2008) Quay crane scheduling with non-interference constraints in port container terminals. Transp Res Part E 44(1):124–135

    Article  Google Scholar 

  • Legato P, Trunfio R, Meisel F (2012) Modeling and solving rich quay crane scheduling problems. Comput Oper Res 39(9):2063–2078

    Article  MathSciNet  MATH  Google Scholar 

  • Letchford AN, Lodi A (2003) An augment-and-branch-and-cut framework for mixed 0–1 programming. Combinatorial optimization—Eureka. Springer, Berlin Heidelberg, pp 119–133

    Google Scholar 

  • Lim A, Rodrigues B, Xu Z (2007) A m-parallel crane scheduling problem with a non-crossing constraint. Nav Res Log 54(2):115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Wan YW, Wang L (2006) Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Nav Res Log 53(1):60–74

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Z, Wang S, Chen W, Zheng Y (2016) Willingness to board: a novel concept for modeling queuing up passengers. Transp Res Part B 90:70–82

    Article  Google Scholar 

  • Meisel F, Bierwirth C (2011) A unified approach for the evaluation of quay crane scheduling models and algorithms. Comput Oper Res 38(3):683–693

    Article  Google Scholar 

  • Meng Q, Wang S, Andersson H, Thun K (2013) Containership routing and scheduling in liner shipping: overview and future research directions. Transp Sci 48(2):265–280

    Article  Google Scholar 

  • Moccia L, Cordeau JF, Gaudioso M, Laporte G (2006) A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Nav Res Log 53(1):45–59

    Article  MathSciNet  MATH  Google Scholar 

  • Ng WC, Mak KL (2006) Quay crane scheduling in container terminals. Eng Optim 38(6):723–737

    Article  Google Scholar 

  • Peterkofsky RI, Daganzo CF (1990) A branch and bound solution method for the crane scheduling problem. Transp Res Part B 24(3):159–172

    Article  Google Scholar 

  • Port of Antwerp (2016) Accessed Aprial 17, 2016. https://www.hafen-hamburg.de/en

  • Qureshi AG, Taniguchi E, Yamada T (2009) An exact solution approach for vehicle routing and scheduling problems with soft time windows. Transp Res Part E 45(6):960–977

    Article  Google Scholar 

  • Rakke JG, Christiansen M, Fagerholt K, Laporte G (2012) The traveling salesman problem with draft limits. Comput Oper Res 39(9):2161–2167

    Article  MathSciNet  MATH  Google Scholar 

  • Ronen D (1982) The effect of oil price on the optimal speed of ships. J Oper Res Soc 33:1035–1040

    Article  Google Scholar 

  • Ronen D (2011) The effect of oil price on containership speed and fleet size. J Oper Res Soc 62(1):211–216

    Article  Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. IEEE world congress on computational intelligence, pp 69–73

  • SHMSA (2016) Accessed April 16, 2016. http://www.Shmsa.gov.cn

  • Song JH, Furman KC (2013) A maritime inventory routing problem: practical approach. Comput Oper Res 40(3):657–665

    Article  MATH  Google Scholar 

  • Tavakkoli-Moghaddam R, Makui A, Salahi S, Bazzazi M, Taheri F (2009) An efficient algorithm for solving a new mathematical model for a quay crane scheduling problem in container ports. Comput Ind Eng 56(1):241–248

    Article  Google Scholar 

  • Tawarmalani M, Sahinidis NV (2004) Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math Program 99(3):563–591

    Article  MathSciNet  MATH  Google Scholar 

  • Ting CJ, Wu KC, Chou H (2014) Particle swarm optimization algorithm for the berth allocation problem. Expert Syst Appl 41(4):1543–1550

    Article  Google Scholar 

  • Wang S, Meng Q (2011) Schedule design and container routing in liner shipping. Transp Res Rec 2222:25–33

    Article  Google Scholar 

  • Wang S, Meng Q (2012) Sailing speed optimization for container ships in a liner shipping network. Transp Res Part E 48(3):701–714

    Article  Google Scholar 

  • Wang S, Zheng J, Zheng K, Guo J, Liu X (2012) Multi resource scheduling problem based on an improved discrete particle swarm optimization. Phys Proc 25:576–582

    Article  Google Scholar 

  • Xu D, Li CL, Leung JYT (2012) Berth allocation with time-dependent physical limitations on vessels. Eur J Oper Res 216(1):47–56

    Article  MathSciNet  MATH  Google Scholar 

  • Zhen L (2015) Tactical berth allocation under uncertainty. Eur J Oper Res 247:928–944

    Article  MathSciNet  MATH  Google Scholar 

  • Zhen L (2016) Modeling of yard congestion and optimization of yard template in container ports. Transp Res Part B 90:83–104

    Article  Google Scholar 

  • Zhen L, Xu Z, Wang K, Ding Y (2016) Multi-period yard template planning in container terminals. Transp Res Part B. doi:10.1016/j.trb.2015.12.006

    Google Scholar 

  • Zhu Y, Lim A (2006) Crane scheduling with non-crossing constraint. J Oper Res Soc 57(12):1464–1471

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their valuable comments and constructive suggestions, which have greatly improved the quality of this paper. This research is supported by the National Natural Science Foundation of China (71422007), Shanghai Social Science Research Program (2014BGL006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Zhen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Wang, S. & Zhen, L. Quay crane scheduling problem with considering tidal impact and fuel consumption. Flex Serv Manuf J 29, 345–368 (2017). https://doi.org/10.1007/s10696-016-9248-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-016-9248-4

Keywords

Navigation