Skip to main content
Log in

Effects of acute hyperglycemia stress on plasma glucose, glycogen content, and expressions of glycogen synthase and phosphorylase in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, the hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), a typical carnivorous fish, was chosen as a model to investigate the regulation of glycogen metabolism owning to its characteristic of glucose intolerance. The variation of plasma glucose concentration, glycogen content, and expressions of glycogen metabolism-related genes under acute hyperglycemia stress were measured. Following glucose administration, plasma glucose concentration increased immediately, and the glucose level remained elevated for at least 12 h. The prolonged glucose clearance and hyperglycemia revealed glucose intolerance of this fish species. Meanwhile, the glycogen content in both liver and muscle changed significantly during the clearance of plasma glucose. However, the peak value of hepatic glycogen (1 and 12 h post injection) appeared much earlier than muscle (3 and 24 h post injection). To investigate the regulation of glycogen metabolism from molecular aspect, the complete coding sequence (CDS) of glycogen synthase (GS) and glycogen phosphorylase (GP) in both liver and muscle types were obtained, encoding a polypeptide of 704, 711, 853, and 842 amino acid residues, respectively. The results of gene expression analysis revealed that the expression of liver type and muscle type GS was significantly higher than other time points at 12 and 24 h post glucose injection, respectively. Meanwhile, the highest expressions of GP in both liver and muscle types occurred at 24 h post glucose injection. The response of GS and GP to glucose load may account for the variation of glycogen content at the transcriptional level to some extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amoah A, Coyle SD, Webster CD, Durborow RM, Bright LA, Tidwell JH (2008) Effects of graded levels of carbohydrate on growth and survival of largemouth bass, Micropterus salmoides. J World Aquacult Soc 39(3):397–405

    Article  Google Scholar 

  • Booth MA, Anderson AJ, Allan GL (2006) Investigation of the nutritional requirements of Australian snapper Pagrus auratus (Bloch & Schneider 1801): digestibility of gelatinized wheat starch and clearance of an intra-peritoneal injection of d-glucose. Aquac Res 37:975–985

    Article  CAS  Google Scholar 

  • Capilla E, Médale F, Navarro I, Panserat S, Vachot C, Kaushik S, Gutiérrez J (2003) Muscle insulin binding and plasma levels in relation to liver glucokinase activity, glucose metabolism and dietary carbohydrates in rainbow trout. Regul Pept 110(2):123–132

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Wang XY, Pi RR, Feng JY, Luo L, Lin SM, Wang DS (2018) Preproinsulin expression, insulin release, and hepatic glucose metabolism after a glucose load in the omnivorous GIFT tilapia Oreochromis niloticus. Aquaculture 482:183–192

    Article  CAS  Google Scholar 

  • Cowey CB, De la Higuera M, Adron JW (1977) The effect of dietary composition and of insulin on gluconeogenesis in rainbow trout (Salmo gairdneri). Br J Nutr 38(3):385–395

    Article  PubMed  CAS  Google Scholar 

  • Ekmann KS, Dalsgaard J, Holm J, Campbell PJ, Skov PV (2013) Glycogenesis and de novo lipid synthesis from dietary starch in juvenile gilthead sea bream (Sparus aurata) quantified with stable isotopes. Br J Nutr 109(12):2135–2146

    Article  PubMed  CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles A (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35(3):519–539

    Article  PubMed  CAS  Google Scholar 

  • Enes P, Peres H, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A (2011) Insulin and IGF-I response to a glucose load in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 315(3):321–326

    Article  CAS  Google Scholar 

  • Enes P, Peres H, Pousao-Ferreira P, Sanchez-Gurmache J, Navarro I, Gutiérrez J, Oliva-Teles A (2012) Glycemic and insulin responses in white sea bream Diplodus sargus, after intraperitoneal administration of glucose. Fish Physiol Biochem 38(3):645–652

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo-Garutti ML, Navarro I, Capilla E, Souza RHS, Moraes G, Gutiérrez J, Vicentini-Paulino MLM (2002) Metabolic changes in Brycon cephalus (Teleostei, Characidae) during post-feeding and fasting. Comp Biochem Phys A 132(2):467–476

    Article  CAS  Google Scholar 

  • Foster GD, Moon TW (1989) Insulin and the regulation of glycogen metabolism and gluconeogenesis in American eel hepatocytes. Gen Comp Endocr. 73(3):374–381

    Article  PubMed  CAS  Google Scholar 

  • Foster GD, Moon TW (1990) Control of key carbohydrate-metabolizing enzymes by insulin and glucagon in freshly isolated hepatocytes of the Marine teleost Hemitripterus americanus. J Exp Zool Part A 254(1):55–62

    Article  Google Scholar 

  • Furuichi M, Yone Y (1981) Change of blood sugar and plasma insulin levels of fishes in glucose tolerance test. Bull Jpn Soc Sci Fish 47:761–764

    Article  CAS  Google Scholar 

  • Garcia-Riera MP, Hemre GI (1996) Glucose tolerance in turbot, Scophthalmus maximus (L.). Aquac Nutr 2:117–120

    Article  CAS  Google Scholar 

  • Goodwin AE, Lochmann RT, Tieman DM, Mitchell AJ (2002) Massive hepatic necrosis and nodular regeneration in largemouth bass fed diets high in available carbohydrate. J World Aquacult Soc 33(4):466–477

    Article  Google Scholar 

  • Harmon JS, Eilertson CD, Sheridan MA, Plisetskaya EM (1991) Insulin suppression is associated with hypersomatostatinemia and hyperglucagonemia in glucose-injected rainbow trout. Am J Physiol-Reg I 261(3):R609–R613

    CAS  Google Scholar 

  • Hemre GI, Torrissen O, Krogdahl A, Lie Ø (1995) Glucose tolerance in Atlantic salmon, Salmon salar L., dependence on adaptation to dietary starch and water temperature. Aquac Nutr 1:69–75

    Article  CAS  Google Scholar 

  • Hemre GI, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8(3):175–194

    Article  CAS  Google Scholar 

  • Jin J, Médale F, Kamalam BS, Aguirre P, Véron V, Panserat S (2014) Comparison of glucose and lipid metabolic gene expressions between fat and lean lines of rainbow trout after a glucose load. PLoS One 9(8):e105548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legate NJ, Bonen A, Moon TW (2001) Glucose tolerance and peripheral glucose utilization in rainbow trout (Oncorhynchus mykiss), American eel (Anguilla rostrata), and black bullhead catfish (Ameiurus melas). Gen Comp Endocr 122(1):48–59

    Article  PubMed  CAS  Google Scholar 

  • Leung LY, Woo NY (2012) Influence of dietary carbohydrate level on endocrine status and hepatic carbohydrate metabolism in the marine fish Sparus sarba. Fish Physiol Biochem 38(2):543–554

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Dong X, Chi S, Yang Q, Zhang S, Chen L, Tan B (2017) Molecular cloning of glucose transporter 1 in grouper Epinephelus coioides and effects of an acute hyperglycemia stress on its expression and glucose tolerance. Fish Physiol Biochem 43(1):103–114

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Method 25(4):402–408

    Article  CAS  Google Scholar 

  • Luo Y, Wu X, Li W, Jiang S, Lu S, Wu M (2016) Effects of different corn starch levels on growth, protein input, and feed utilization of juvenile hybrid grouper (male Epinephelus lanceolatus× female E. fuscoguttatus). N Am J Aquacult 78(2):168–173

    Article  Google Scholar 

  • Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Phys B 129(2):243–249

    Article  CAS  Google Scholar 

  • Pereira C, Vijayan MM, Storey KB, Jones RA, Moon TW (1995) Role of glucose and insulin in regulating glycogen synthase and phosphorylase activities in rainbow trout hepatocytes. J Comp Physiol B Biochem Syst Environ Physiol 165:62–70

  • Peres H, Goncalves P, Oliva-Teles A (1999) Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture 179(1):415–423

    Article  CAS  Google Scholar 

  • Polakof S, Míguez JM, Soengas JL (2008) Changes in food intake and glucosensing function of hypothalamus and hindbrain in rainbow trout subjected to hyperglycemic or hypoglycemic conditions. J Comp Physiol A 194(9):829–839

    Article  CAS  Google Scholar 

  • Polakof S, Panserat S, Soengas JL, Moon TW (2012) Glucose metabolism in fish: a review. J Comp Physiol B 182(8):1015–1045

    Article  PubMed  CAS  Google Scholar 

  • Robison BD, Drew RE, Murdoch GK, Powell M, Rodnick KJ, Settles M, Stone D, Churchill E, Hill RA, Papasani MR, Lewis SS, Hardy RW (2008) Sexual dimorphism in hepatic gene expression and the response to dietary carbohydrate manipulation in the zebrafish (Danio rerio). Comp Biochem Physiol 3D:141–154

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shikata T, Iwanaga S, Shimeno S (1994) Effects of dietary glucose, fructose, and galactose on hepatopancreatic enzyme activities and body composition in carp. Fish Sci 60(5):613–617

    Article  CAS  Google Scholar 

  • Stone DA (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11(4):337–369

    Article  CAS  Google Scholar 

  • Stone DAJ, Allan GL, Anderson AJ (2003) Carbohydrate utilization by juvenile silver perch, Bidyanus bidyanus (Mitchell). I. Uptake and clearance of monosaccharides following intraperitoneal injection. Aquac Res 34:97–107

    Article  CAS  Google Scholar 

  • Tacon AG, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285(1):146–158

    Article  CAS  Google Scholar 

  • Tan Q, Xie S, Zhu X, Lei W, Yang Y (2006) Effect of dietary carbohydrate sources on growth performance and utilization for gibel carp (Carassius auratus gibelio) and Chinese longsnout catfish (Leiocassis longirostris Günther). Aquac Nutr 12(1):61–70

    Article  CAS  Google Scholar 

  • Vijayan MM, Maule AG, Schreck CB, Moon TW (1993) Hormonal control of hepatic glycogen metabolism in food-deprived, continuously swimming coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 50(8):1676–1682

    Article  CAS  Google Scholar 

  • Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124(1–4):67–80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by China Postdoctoral Science Foundation (2016M601566); the China-ASEAN Maritime Cooperation Fund, China-ASEAN Center for Joint Research and Promotion of Marine Aquaculture Technology (DF); Shanghai Agriculture Applied Technology Development Program, China (Grant No.G20130508); Open fund of Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology (2016LMFS-B17); and Key Laboratory of Mariculture of Ministry of Education, Ocean University of China (KLM2017003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naisong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Sang, C., Zhang, J. et al. Effects of acute hyperglycemia stress on plasma glucose, glycogen content, and expressions of glycogen synthase and phosphorylase in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Fish Physiol Biochem 44, 1185–1196 (2018). https://doi.org/10.1007/s10695-018-0508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-018-0508-y

Keywords

Navigation