Skip to main content
Log in

Efficient Flame Detection Based on Static and Dynamic Texture Analysis in Forest Fire Detection

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Flame detection is a specialized task in fire detection and forest fire monitoring systems. In this paper, a static and dynamic texture analysis of flame in forest fire detection is proposed. The flames are initially segmented, based on the color in YCbCr (luminance, chrominance blue and chrominance red components) color space called candidate flame region. From the candidate flame region, the static and dynamic texture features are extracted. Static texture features are obtained by hybrid texture descriptors. Dynamic texture features are derived using 2D wavelet decomposition in temporal domain and 3D volumetric wavelet decomposition. Finally, extreme learning machine classifier is used to classify the candidate flame region as real flame or non-flame, based on the extracted texture features. The proposed flame detection system is applied to various fire detection scenes, in the real environments and it effectively distinguishes fire from fire-colored moving objects. The results show that the proposed fire detection technique achieves the average detection rate of 95.65% which is better compared to other state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Wang S, Chen J (2012) A method of video flame detection based on multi-feature fusion. J Converg Inf Technol 7(21):634–642. doi:10.4156/jcit.vol7.issue21.76

    Google Scholar 

  2. Ugur Toreyin B, Dedeoglu Y, Dudukbay U, Enis Cetin A (2006) Computer vision based method for real time fire and flame detection. Pattern Recogn Lett 27(1):49–58. doi:10.1016/j.patrec.2005.06.015

    Article  Google Scholar 

  3. Ko BC, Cheong K-H, Nam J-Y (2010a) Early fire detection algorithm based on irregular patterns of flames and hierarchical bayesian networks. Fire Saf J 45(4):262–270. doi:10.1016/j.firesaf.2010.04.001

    Article  Google Scholar 

  4. Truong TX, Kim J-M (2012) Fire flame detection in video sequences using multi-stage pattern recognition techniques. Eng Appl Artif Intell 25(7):1365–1372. doi:10.1016/j.engappai.2012.05.007

    Article  Google Scholar 

  5. Chen J, He Y, Wang J (2010) Multi-feature fusion based fast video flame detection. Build Environ 45(5):1113–1122. doi:10.1016/j.buildenv.2009.10.017

    Article  Google Scholar 

  6. Celik T, Demirel H (2009) Fire detection in video sequences using a generic color model. Fire Saf J 44(2):147–158. doi:10.1016/j.firesaf.2008.05.005

    Article  Google Scholar 

  7. Warhade KK, Merchant SN, Desai UB (2011) Shot boundary detection in the presence of fire flicker explosion using stationary wavelet transform. SIViP 5(4):507–515. doi:10.1007/s11760-010-0163

    Article  Google Scholar 

  8. Wang L, Ye M, Ding J, Zhu Y (2011) Hybrid fire detection using hidden markov model and luminance map. Comput Electr Eng 37(6):905–915. doi:10.1016/j.compeleceng.2011.09.011

    Article  Google Scholar 

  9. Marbach G, Loepfe M, Brupbacher T (2006) An image processing technique for fire detection in video images. Fire Saf J 41(4):285–289. doi:10.1016/j.firesaf.2006.02.001

    Article  Google Scholar 

  10. Stadler A, Windisch T, Diepold K (2014) Comparison of intensity flickering features for video based flame detection algorithms. Fire Saf J 66:1–7. doi:10.1016/j.firesaf.2014.03.001

    Article  Google Scholar 

  11. Yu C, Mei Z, Zhang X (2013) A real-time video fire flame and smoke detection algorithm. Procedia Eng 62:891–898. doi:10.1016/j.proeng.2013.08.140

    Article  Google Scholar 

  12. Chen J, Bao Q (2012) Digital image processing based fire flame color and oscillation frequency analysis. Procedia Eng 45:595–601. doi:10.1016/j.proeng.2012.08.209

    Article  Google Scholar 

  13. Habiboglu YH, Gunay O, Enis Cetin A (2012) Covariance matrix-based fire and flame detection method in video. Mach Vis Appl 23(6):1103–1113. doi:10.1007/s00138-011-0369-1

    Article  Google Scholar 

  14. Celik T, Demirel H, Ozkaramanli H, Uyguroglu M (2007) Fire detection using statistical color model in video sequences. J Vis Commun Image Represent 18(2):176–185. doi:10.1016/j.jvcir.2006.12.003

    Article  Google Scholar 

  15. Ko BC, Cheong K-H, Nam J-Y (2010b) Early fire detection algorithm based on irregular patterns of flames and hierarchical bayesian networks. Fire Saf J 45(4):262–270. doi:10.1016/j.firesaf.2010.04.001

    Article  Google Scholar 

  16. Arivazhagan S, Ganesan L, Pudam PS (2006) Texture Classification using Gabor Wavelets based rotation invariant features. Pattern Recogn Lett 27:1976–1980. doi:10.1016/j.patrec.2006.05.008

    Article  Google Scholar 

  17. Jia X, Yang X, Cao K, Zang Y, Zhang N, Dai R, Zhu X, Tian J (2014) Multi-scale local binary pattern with filters for spoof finger print detection. Inf Sci 268:91–102. doi:10.1016/j.ins.2013.06.041

    Article  Google Scholar 

  18. Bruno DOT, Do Nascimento MZ, Ramos RP, Batista VR, Neves LA, Martins AS (2016) LBP operators on curvelet coefficients as an algorithm to describe texture in breast cancer tissues. Expert Syst Appl 55:329–340. doi:10.1016/j.eswa.2016.02.019

    Article  Google Scholar 

  19. Kayaa Y, Grulb OFE, Tekin R (2015) Two novel local binary pattern descriptors for texture analysis. Appl Soft Comput 34:728–735. doi:10.1016/j.asoc.2015.06.009

    Article  Google Scholar 

  20. Yadav AR, Anand RS, Dewal ML, Gupta S (2015) Multiresolution local binary pattern variants based texture feature extraction techniques for efficient classification of microscopic images of hardwood spieces. Appl Soft Comput 32:101–112. doi:10.1016/j.asoc.2015.03.039

    Article  Google Scholar 

  21. Tang Z, Yuancheng S, Er MJ, Qi F, Li ZC, Zhou J (2015) A local binary pattern based texture descriptors for classification of tea leaves. Neurocomputing 168:1011–1023. doi:10.1016/j.neucom.2015.05.024

    Article  Google Scholar 

  22. Ojala T, Pietikainen M, Meanpaa T (2002) Multi resolution gray scale and rotating invariant texture classification with local binary pattern. IEEE Trans Pattern Anal Mach Intell 24:971–987. doi:10.1109/TPAMI.2002.1017623

    Article  Google Scholar 

  23. Zhao Y, Jia W, Rong-Xiang H, Min H (2013) Completed robust local binary pattern for texture classification. Neurocomputing. 106:68–76. doi:10.1016/j.neucom.2012.10.017

    Article  Google Scholar 

  24. Sripath D (2003) Efficient implementation of discrete wavelet transforms using FPGAs. Electronic Theses, Treatises and Dissertations, Florida State University

  25. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recogn Lett 24:1513–1521. doi:10.1016/S0167-8655(02)00390-2

    Article  MATH  Google Scholar 

  26. Doretto G, Chiuso A, Wu Y, Soatto S (2003) Dynamic textures. Int J Comput Vision 51(2):91–109. doi:10.1023/A:1021669406132

    Article  MATH  Google Scholar 

  27. Emmy Prema C, Vinsley SS, Suresh S (2016) Multi feature analysis of smoke in YUV color space for early forest fire detection. Fire Technol 52:1319–1342. doi:10.1007/s10694-016-0580-8

    Article  Google Scholar 

  28. Arai K, Asmara RA (2014) Human gait gender classification using 3D discrete wavelet transforms feature extraction. Int J Adv Res Artif Intell 3(2):12–17. doi:10.14569/IJARAI.2014.030203

    Google Scholar 

  29. An L, Bhanu B (2012) Image super-resolution by extreme learning machine. In: IEEE international conference on image processing. Orlando, September 30 2012–October 3 2012, pp. 2209–2212. doi:10.1109/ICIP.2012.6467333

  30. Kaya Y, Kayci L, Tekin R (2013) A computer vision system for the automatic identification of butterfly species via gabor filter based texture features and extreme learning machine. TEM J 2(1):13–20

    Google Scholar 

  31. Minhas R, Mohammed A, Wu Q (2012) Incremental learning in human action recognition based on snippets. IEEE Trans Circuits Syst Video Technol 22(11):1529–1541. doi:10.1109/TCSVT.2011.2177182

    Article  Google Scholar 

  32. Choi K, Toh KA, Byun H (2012) Incremental face recognition for large-scale social network services. Pattern Recogn 45(8):2868–2883. doi:10.1016/j.patcog.2012.02.002

    Article  Google Scholar 

  33. Bartlett P (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44(2):525–536. doi:10.1109/18.661502

    Article  MathSciNet  MATH  Google Scholar 

  34. Dimitropoulos K, Barmpoutis P, Grammalidis N (2015) Spatio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection. IEEE Trans Circuits Syst Video Technol 25(2):339–351. doi:10.1109/TCSVT.2014.2339592

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Emmy Prema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emmy Prema, C., Vinsley, S.S. & Suresh, S. Efficient Flame Detection Based on Static and Dynamic Texture Analysis in Forest Fire Detection. Fire Technol 54, 255–288 (2018). https://doi.org/10.1007/s10694-017-0683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-017-0683-x

Keywords

Navigation