Skip to main content
Log in

Q48P mutation in the hMLH1 gene associated with Lynch syndrome in three Hungarian families

  • Short Communication
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Lynch syndrome (Hereditary nonpolyposis colorectal cancer, HNPCC) is an inherited disease with variable phenotype causing the development of colon cancer and other malignancies. The basis of the disease is believed to be the mismatch repair gene mutations. Genetic screening has been performed among the patients who have undergone surgery for colon cancer at the University of Debrecen, Department of Surgery. Tumor samples of the screened patients were submitted to immunohistochemistry on hMLH1, hMSH2 and hMSH6 genes, microsatellite instability testing, followed by sequencing and multiple ligation dependent probe amplification. Three families were identified with the missense mutation c.143A>C (p.Q48P) of hMLH1 gene. In one of the families a segregation analysis of this particular variant was also accomplished. The segregation analysis revealed a clear correlation between the tumor cases and the occurrence of this mutation. However, none of the analyzed 100 healthy controls demonstrated the same aberration. There is only one published evidence in the literature about the presence of this rare variant in any population. The Gln to Pro switch in the ATPase domain, a conservative region of the hMLH1 gene, creates significant changes in the protein structure. These results indicate that this mutation is the abnormality responsible for the patients’ phenotype and it is feasible that this particular aberration occurs more frequently among Hungarian Lynch syndrome patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Abbreviations

HNPCC:

Hereditary nonpolyposis colorectal cancer

MLPA:

Multiple ligation dependent probe amplification

MMR:

Mismatch repair

MSI:

Microsatellite instability

References

  1. Thorson AG, Knezetic JA, Lynch HT (1999) A century of progress in hereditary nonpolyposis colorectal cancer (Lynch syndrome). Dis Colon Rectum 42:1–9

    Article  PubMed  CAS  Google Scholar 

  2. Suoza RF (2001) Review article: a molecular rationale for the how, when and why of colorectal cancer screening. Aliment Pharmacol Ther 15:451–462

    Article  Google Scholar 

  3. Loukola A, Eklin K, Laiho P et al (2001) Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 61:4545–4549

    PubMed  CAS  Google Scholar 

  4. Dieumegard B, Grandjouan S, Sabourin JC et al (2000) Extensive molecular screening for non-polyposis colorectal cancer. Br J Cancer 82:871–880

    Article  PubMed  CAS  Google Scholar 

  5. Lynch HT, Jass J, Lynch JF et al (2005) Hereditary colorectal cancer: an updated review. Part II: the lynch syndrome (hereditary nonpoliposis colorectal cancer). Gastroentol Hepatol 1:117–127

    Google Scholar 

  6. Vasen HF, Watson P, Mecklin JP et al (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndroma) proposed by the International Collaborative Group on HNPCC. Gastroenterology 116:1453–1456

    Article  PubMed  CAS  Google Scholar 

  7. Peltomaki P, Vasen HF (1997) Mutations predisposing to hereditary non-polyposis colorectal cancer: database and results of collaborative study. The International Collaborative Group on hereditary non-polyposis colorectal cancer. Gastroenterology 113:1146–1158

    Article  PubMed  CAS  Google Scholar 

  8. Lynch HT, de la Chapelle A (2003) Hereditary colorectal cancer. N Engl J Med 348:919–932

    Article  PubMed  CAS  Google Scholar 

  9. http://chromium.liacs.nl/LOVD2/colon_cancer/home.php?select_db=MLH1. (In this database entries from the MMR, InSiGHT and MMRUV databases have been merged.)

  10. Chung DC (2000) The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis. Gastroenterology 119:854

    Article  PubMed  CAS  Google Scholar 

  11. de la Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 4:769–780

    Article  PubMed  Google Scholar 

  12. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers (news, comment). Nature 386:761–763

    Article  PubMed  CAS  Google Scholar 

  13. Niessen RC, Hofstra RM, Westers H et al (2009) Germline hypermethylation of MLH1 and EPCAM deletions are a frequent cause of Lynch syndrome. Genes Chromosomes Cancer 48(8):737–744

    Article  PubMed  CAS  Google Scholar 

  14. Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  15. Gologan A, Krasinskas A, Hunt J et al (2005) Performance of the revised Bethesda guidelines for identification of colorectal carcinomas with a high level of microsatellite instability. Arch Pathol Lab Med 129:1390–1397

    PubMed  CAS  Google Scholar 

  16. Lawes DA, SenGupta SB, Boulos PB (2002) Pathogenesis and clinical management of hereditary non-polyposis colorectal cancer. Br J Surg 89:1357–1369

    Article  PubMed  CAS  Google Scholar 

  17. Lynch HT (1996) Is there a role for prophylactic subtotal colectomy among hereditary nonpolyposis colorectal cancer germline mutation carriers? Dis Colon Rectum 39:109–110

    Article  PubMed  CAS  Google Scholar 

  18. Iino H, Simms L, Young J et al (2000) DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. Gut 47:37–42

    Article  PubMed  CAS  Google Scholar 

  19. Beck NE, Tomlinson IPM, Homfray T et al (1997) Use of SSCP analysis to identify germline mutations in HNPCC families fulfilling the Amsterdam criteria. Hum Genet 99:219–224

    Article  PubMed  CAS  Google Scholar 

  20. Yanagisawa Y, Akiyama Y, Iida S et al (2000) Methylation of the hMLH1 promoter in familial gastric cancer with microsatellite instability. Int J Cancer 85:50–53

    Article  PubMed  CAS  Google Scholar 

  21. Tanyi M, Olasz J, Kámory E (2008) Difficulties in recognizing families with hereditary non-polyposis colorectal carcinoma. Presentation of 4 families with proven mutation. Eur J Surg Oncol 34:1322–1327

    Article  PubMed  CAS  Google Scholar 

  22. Lynch HT, Riley BD, Weismann S et al (2003) Hereditary nonpolyposis colorectal carcinoma (HNPCC) and HNPCC-like families: problems in diagnosis, surveillance, and management. Cancer 100(1):53–64

    Article  Google Scholar 

  23. Hardt K, Heick SB, Betz B et al (2011) Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Fam Cancer 10:273–284

    Article  PubMed  CAS  Google Scholar 

  24. Czako L, Tiszlavicz L, Takacs R et al (2005) The first molecular analysis of a Hungarian HNPCC family: a novel MSH2 germline mutation. Orv Hetil 146(20):1009–1016

    PubMed  Google Scholar 

  25. Tanyi M, Olasz J, Lukács G et al (2006) Pedigree and genetic analysis of a novel mutation carrier patient suffering from hereditary nonpolyposis colorectal cancer. World J Gastroenterol 12(8):1192–1197

    PubMed  CAS  Google Scholar 

  26. Kámory E, Tanyi M, Kolacsek O et al (2006) Two germline alterations in mismatch repair genes found in a HNPCC patient with poor family history. Pathol Oncol Res 12(4):228–233

    Article  PubMed  Google Scholar 

  27. Papp J, Kovács ME, Oláh E (2007) Germline MLH1 and MSH2 mutational spectrum including frequent large genomic aberrations in Hungarian hereditary non-polyposis colorectal cancer families: implications for genetic testing. World J Gastroenterol 13(19):2727–2732

    PubMed  CAS  Google Scholar 

  28. Tanyi M, Olasz J, Lukacs G et al (2009) A new mutation in Muir-Torre syndrome associated with familiar transmission of different gastrointestinal adenocarcinomas. Eur J Surg Oncol 35(10):1128–1130

    Article  PubMed  CAS  Google Scholar 

  29. Bianchi F, Raponi M, Piva F et al (2010) An intronic mutation in MLH1 associated with familial colon and breast cancer. Fam Cancer, Puplished online 18 August 2010

  30. Sorting Intolerant from Tolerant: http://blocks.fhcrc.org/sift/SIFT.html

  31. PolyPhen: http://genetics.bwh.harvard.edu/pph/

  32. PMut: http://mmb2.pcb.ub.es:8080/PMut/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Tanyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanyi, M., Olasz, J., Tanyi, J.L. et al. Q48P mutation in the hMLH1 gene associated with Lynch syndrome in three Hungarian families. Familial Cancer 11, 519–524 (2012). https://doi.org/10.1007/s10689-012-9515-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-012-9515-9

Keywords

Navigation