Skip to main content
Log in

A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance—functional analysis reveals the pathogenic one

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS family carrying VUS in both MSH2 (c.2768T>A, p.Val923Glu) and MSH6 (c.3563G>A, p.Ser1188Asn). Two colorectal cancer (CRC) patients were studied for mutations and identified as carriers of both variants. In spite of a relatively high mean age of cancer onset (59.5 years) in the family, many CRC patients and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence that instead of MSH2 p.Val923Glu the MSH6 p.Ser1188Asn variant is completely MMR-deficient, the present study confirms the previous findings, and suggests that MSH6 (c.3563G>A, p.Ser1188Asn) is the pathogenic mutation in the family. Moreover, our results strongly support the strategy to functionally assess all identified VUS before predictive gene testing and genetic counseling are offered to a family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AC:

Amsterdam criteria

CRC:

Colorectal cancer

EPCAM:

Epithelial cell adhesion molecule

HNPCC:

Hereditary non-polyposis colorectal cancer

IHC:

Immunohistochemical

LS:

Lynch syndrome

MMR:

Mismatch repair

MSI:

Microsatellite instability

NE:

Nuclear extract

TE:

Total extract

VUS:

Variants of uncertain significance

WT:

Wild type

References

  1. Woods MO, Williams P, Careen A et al (2007) A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat 28:669–673

    Article  PubMed  CAS  Google Scholar 

  2. Hendriks YM, Wagner A, Morreau H et al (2004) Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127:17–25

    Article  PubMed  CAS  Google Scholar 

  3. Berends MJ, Wu Y, Sijmons RH et al (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70:26–37

    Article  PubMed  CAS  Google Scholar 

  4. Wagner A, Hendriks Y, Meijers-Heijboer EJ et al (2001) Atypical HNPCC owing to MSH6 germline mutations: analysis of a large Dutch pedigree. J Med Genet 38:318–322

    Article  PubMed  CAS  Google Scholar 

  5. Wu Y, Berends MJ, Mensink RG et al (1999) Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet 65:1291–1298

    Article  PubMed  CAS  Google Scholar 

  6. Couch FJ, Rasmussen LJ, Hofstra R et al (2008) Assessment of functional effects of unclassified genetic variants. Hum Mutat 29:1314–1326

    Article  PubMed  CAS  Google Scholar 

  7. Ollila S, Sarantaus L, Kariola R et al (2006) Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Gastroenterology 131:1408–1417

    Article  PubMed  CAS  Google Scholar 

  8. Ollila S, Dermadi Bebek D, Jiricny J et al (2008) Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 29:1355–1363

    Article  PubMed  CAS  Google Scholar 

  9. Bisgaard ML, Jager AC, Myrhoj T et al (2002) Hereditary non-polyposis colorectal cancer (HNPCC): phenotype-genotype correlation between patients with and without identified mutation. Hum Mutat 20:20–27

    Article  PubMed  CAS  Google Scholar 

  10. Kantelinen J, Kansikas M, Korhonen MK et al (2010) MutSbeta exceeds MutSalpha in dinucleotide loop repair. Br J Cancer 102:1068–1073

    Article  PubMed  CAS  Google Scholar 

  11. Kariola R, Hampel H, Frankel WL et al (2004) MSH6 missense mutations are often associated with no or low cancer susceptibility. Br J Cancer 91:1287–1292

    Article  PubMed  CAS  Google Scholar 

  12. de Wind N, Dekker M, Claij N et al (1999) HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nat Genet 23:359–362

    Article  PubMed  Google Scholar 

  13. Chang DK, Ricciardiello L, Goel A et al (2000) Steady-state regulation of the human DNA mismatch repair system. J Biol Chem 275:18424–18431

    Article  PubMed  CAS  Google Scholar 

  14. Marra G, Iaccarino I, Lettieri T et al (1998) Mismatch repair deficiency associated with overexpression of the MSH3 gene. Proc Natl Acad Sci USA 95:8568–8573

    Article  PubMed  CAS  Google Scholar 

  15. Kariola R, Otway R, Lonnqvist KE et al (2003) Two mismatch repair gene mutations found in a colon cancer patient–which one is pathogenic? Hum Genet 112:105–109

    PubMed  CAS  Google Scholar 

  16. Cannavo E, Marra G, Sabates-Bellver J et al (2005) Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 65:10759–10766

    Article  PubMed  CAS  Google Scholar 

  17. Drummond JT, Genschel J, Wolf E et al (1997) DHFR/MSH3 amplification in methotrexate-resistant cells alters the hMutSalpha/hMutSbeta ratio and reduces the efficiency of base-base mismatch repair. Proc Natl Acad Sci USA 94:10144–10149

    Article  PubMed  CAS  Google Scholar 

  18. Warren JJ, Pohlhaus TJ, Changela A et al (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26:579–592

    Article  PubMed  CAS  Google Scholar 

  19. Pinto C, Veiga I, Pinheiro M et al (2006) MSH6 germline mutations in early-onset colorectal cancer patients without family history of the disease. Br J Cancer 95:752–756

    Article  PubMed  CAS  Google Scholar 

  20. Kloor M, Voigt AY, Schackert HK et al (2011) Analysis of EPCAM protein expression in diagnostics of Lynch syndrome. J Clin Oncol 29:223–227

    Article  PubMed  Google Scholar 

  21. Kansikas M, Kariola R, Nyström M (2011) Verification of the three-step model in assessing the pathogenicity of mismatch repair gene variants. Hum Mutat 32:107–115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mikko Frilander for providing the HeLa cell line and Merja Salmitie for the preparation of 5′IDL1. Friedrik Wikman at Molecular Diagnostics at Skejby Hospital and Henrik Okkels at Clinical Biochemistry at Aalborg Hospital are acknowledged for their contributions to the molecular genetics analyses. Claus Fenger at Pathologic Department at Odense University Hospital is acknowledged for performing the immunohistochemical analyses. This study was supported by grants: Sigrid Juselius Foundation; European Research Council (2008-AdG-232635); Finnish Cancer Organisations, The Biocentrum Helsinki Organisation; The Research Foundation of the University of Helsinki and Kuopio Naturalists’ Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reetta Kariola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantelinen, J., Hansen, T.v.O., Kansikas, M. et al. A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance—functional analysis reveals the pathogenic one. Familial Cancer 10, 515–520 (2011). https://doi.org/10.1007/s10689-011-9436-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-011-9436-z

Keywords

Navigation