Skip to main content
Log in

Drivers of wing shape in a widespread Neotropical bird: a dual role of sex-specific and migration-related functions

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

A large body of research has shown how avian morphology is shaped by specific behavioral repertoires and life history traits. Yet, the majority of such research has been conducted on birds breeding at north-temperate latitudes. We tested the hypothesis that functional wing traits of Fork-tailed Flycatchers (Tyrannus savana), which migrate within South America, vary predictably between non-migratory and migratory flycatchers. Additionally, due to sex-specific differences in this species (e.g., males perform courtship displays), we explored sex-related variation in wing shape. We applied classic measures of wing shape (e.g., wing loading, length, aspect ratio, pointedness), as well as landmark-based morphometric analysis to describe the wing morphology of Fork-tailed Flycatchers from breeding populations across South America. We found that migratory flycatchers tend to have more pointed wings than non-migratory flycatchers. Additionally, we found that males have wings that are significantly longer, more pointed, with a higher aspect ratio and that are more swept than those of females, regardless of whether they migrate or not. Overall, our results suggest that wing shape of Fork-tailed Flycatchers is the result of a complex set of tradeoffs shaped by selective pressures exerted on both sexes (i.e., the need to forage on the wing, evade predators and migrate efficiently), as well as sex-specific behaviors (e.g., the need for males to execute acrobatic displays).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24:7–14

    Google Scholar 

  • Alatalo RV, Gustafsson L, Lundberg A (1984) Why do young passerine birds have shorter wings than older birds? Ibis 126:410–415

    Article  Google Scholar 

  • Areta JI, Miller EH (2014) Display flight and mechanical sounds of the Andean negrito (Lessonia oreas), with comments on the basic structure of flight displays in Fluvicoline flycatchers. Ornitol Neotrop 25:95–105

    Google Scholar 

  • Arizaga J, Campos F, Alonso D (2006) Variations in wing morphology among subspecies might reflect different migration distances in Bluethroat. Ornis Fennica 83:162–169

    Google Scholar 

  • Baldwin MW, Winkler H, Organ CL et al (2010) Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J Evol Biol 23:1050–1063

    Article  PubMed  CAS  Google Scholar 

  • Balmford A, Jones IL, Thomas AL (1994) How to compensate for costly sexually selected tails: the origin of sexually dimorphic wings in long-tailed birds. Evolution 48:1062–1070

    Article  PubMed  Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge

    Google Scholar 

  • Bookstein FL, Streissguth AP, Sampson PD et al (2002) Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. Neuroimage 15:233–251

    Article  PubMed  Google Scholar 

  • Bowlin MS (2007) Sex, wingtip shape, and wing-loading predict arrival date at a stopover site in the Swainson’s Thrush (Catharus ustulatus). Auk 124:1388–1396

    Article  Google Scholar 

  • Bowlin MS, Wikelski M (2008) Pointed wings, low wing loading and calm air reduce migratory flight costs in songbirds. PLoS ONE 3:e2154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buler JJ, Lyon RJ, Smolinsky JA et al (2017) Body mass and wing shape explain variability in broad-scale bird species distributions of migratory passerines along an ecological barrier during stopover. Oecologia 185:205–212

    Article  PubMed  Google Scholar 

  • Byers BE (2011) Birdsong, migration and sexual selection: a skeptical view. Anim Behav 82:e1–e3

    Article  Google Scholar 

  • Chesser RT (1994) Migration in South America: an overview of the Austral system. Bird Conserv Int 4:91–107

    Article  Google Scholar 

  • Collins SA, de Kort SR, Pérez-Tris J et al (2009) Migration strategy and divergent sexual selection on bird song. Proc R Soc Lond B Biol Sci 276:585–590

    Article  Google Scholar 

  • Corman AM, Bairlein F, Schmaljohann H (2014) The nature of the migration route shapes physiological and aerodynamic properties in a migratory songbird. Behav Ecol Sociobiol 68:391–402

    Article  Google Scholar 

  • de la Hera I, Pulido F, Visser ME (2014) Longitudinal data reveal ontogenetic changes in the wing morphology of a long-distance migratory bird. Ibis 156:209–214

    Article  Google Scholar 

  • Egbert JR, Belthoff JR (2003) Wing shape in House Finches differs relative to migratory habit in eastern and western North America. Condor 105:825–829

    Article  Google Scholar 

  • Fernández G, Lank DB (2007) Variation in the wing morphology of Western Sandpipers (Calidris mauri) in relation to sex, age class, and annual cycle. Auk 124:1037–1046

    Article  Google Scholar 

  • Fiedler W (2005) Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behavior. Ann N Y Acad Sci 1046:253–263

    Article  PubMed  Google Scholar 

  • Fitzpatrick JW (2004) Family Tyrannidae (tyrant flycatchers). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 9. Cotingas to pipits and wagtails. Lynx Edicions, Barcelona, pp 170–462

    Google Scholar 

  • Förschler MI, Bairlein F (2011) Morphological shifts of the external flight apparatus across the range of a passerine (Northern Wheatear) with diverging migratory behaviour. PLoS ONE 6(4):e18732. https://doi.org/10.1371/journal.pone.0018732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonzalez PN, Perez SI, Bernal V (2010) Ontogeny of robusticity of craniofacial traits in modern humans: a study of South American populations. Am J Phys Anthropol 142:367–379

    Article  PubMed  Google Scholar 

  • Gustafsson L (1988) Foraging behavior of individual coal tits, Parus ater, in relation to their age, sex and morphology. Anim Behav 36:696–704

    Article  Google Scholar 

  • Hahn S, Korner-Nievergelt F, Emmenegger T et al (2016) Longer wings for faster springs—wing length relates to spring phenology in a long-distance migrant across its range. Ecol Evol 6:68–77

    Article  PubMed  Google Scholar 

  • Hedenström A, Møller AP (1992) Morphological adaptations to song flight in passerine birds: a comparative study. Proc R Soc Lond B Biol Sci 247:183–187

    Article  Google Scholar 

  • Hedenström A, Pettersson J (1986) Differences in fat deposits and wing pointedness between male and female Willow Warblers caught on spring migration at Ottenby, SE Sweden. Orn Scand 17:182–185

    Article  Google Scholar 

  • Hilty SL, Brown B (1986) A guide to the birds of Colombia. Princeton University Press, Princeton

    Google Scholar 

  • Jahn AE, Cueto VR (2012) The potential for comparative research across New World bird migration systems. J Ornithol 153:199–205

    Article  Google Scholar 

  • Jahn AE, Tuero DT (2013) Fork-tailed Flycatcher (Tyrannus savana). In: Schulenberg TS (ed) Neotropical birds. Online Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Jahn AE, Levey DJ, Cueto VR et al (2013) Long-distance bird migration within South America revealed by light-level geolocators. Auk 130:223–229

    Article  Google Scholar 

  • Jahn AE, Seavy NE, Bejarano V et al (2016) Intra-tropical migration and wintering areas of Fork-tailed Flycatchers (Tyrannus savana) breeding in São Paulo, Brazil. Braz J Ornithol 24:116–121

    Google Scholar 

  • Jahn AE, Bejarano V, Benavides Guzmán M et al (2017) Molt while breeding? Lessons from New World Tyrannus flycatchers. J Ornithol 158:1061–1072

    Article  Google Scholar 

  • Jetz W, Sekercioglu CH, Böhning-Gaese K (2008) The worldwide variation in avian clutch size across species and space. PLoS Biol 6:e303

    Article  PubMed Central  CAS  Google Scholar 

  • Kaboli M, Aliabadian M, Guillaumet A et al (2007) Ecomorphology of the wheatears (genus Oenanthe). Ibis 149:792–805

    Article  Google Scholar 

  • Kaluthota C, Brinkman BE, dos Santos EB et al (2016) Transcontinental latitudinal variation in song performance and complexity in house wrens (Troglodytes aedon). Proc R Soc B 283:20152765

    Article  PubMed  CAS  Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res 11:353–357

    Article  Google Scholar 

  • Langerhans RB, Makowicz AM (2009) Shared and unique features of morphological differentiation between predator regimes in Gambusia caymanensis. J Evol Biol 22:2231–2242

    Article  PubMed  CAS  Google Scholar 

  • Lockwood R, Swaddle JP, Rayner JM (1998) Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J Avian Biol 29:273–292

    Article  Google Scholar 

  • MacPherson MP (2017) Migration patterns in birds of the new world: seasonal, morphometric and physiological considerations. Dissertation, Tulane University

  • Marchetti K, Price T, Richman A (1995) Correlates of wing morphology with foraging behavior and migration distance in the genus Phylloscopus. J Avian Biol 26:177–181

    Article  Google Scholar 

  • Marini MÂ, Lobo Y, Lopes LE et al (2009) Biologia reprodutiva de Tyrannus savana (Aves, Tyrannidae) em cerrado do Brasil Central. Biota Neotrop 9:55–63

    Article  Google Scholar 

  • Milá B, Wayne RK, Smith TB (2008) Ecomorphology of migratory and sedentary populations of the Yellow-rumped Warbler (Dendroica coronata). Condor 110:335–344

    Article  Google Scholar 

  • Minias P, Meissner W, Włodarczyk R et al (2015) Wing shape and migration in shorebirds: a comparative study. Ibis 157:528–535

    Article  Google Scholar 

  • Mitteroecker P, Bookstein F (2011) Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol 38:100–114

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Mobley JM (2004) Fork-tailed Flycatcher Tyrannus savana. In: del Hoyo J, Elliot A, Christie D (eds) Handbook of the birds of the world. Contingas to pipits and wagtails, vol 9. Lynx Edicions, Barcelona, p 425

    Google Scholar 

  • Møller AP (1990) Male tail length and female mate choice in the monogamous swallow Hirundo rustica. Anim Behav 39:458–465

    Article  Google Scholar 

  • Møller AP (1994) Phenotype-dependent arrival time and its consequences in a migratory bird. Behav Ecol Sociobiol 35:115–122

    Article  Google Scholar 

  • Møller AP, De Lope F, Saino N (1995) Sexual selection in the barn swallow Hirundo rustica. VI. Aerodynamic adaptations. J Evol Biol 8:671–687

    Article  Google Scholar 

  • Mönkkönen M (1995) Do migrant birds have more pointed wings?: A comparative study. Evol Ecol 9:520–528

    Article  Google Scholar 

  • Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673

    Article  Google Scholar 

  • Murphy MT (2007a) A cautionary tale: cryptic sexual size dimorphism in a socially monogamous passerine. Auk 124:515–525

    Article  Google Scholar 

  • Murphy MT (2007b) Lifetime reproductive success of female Eastern Kingbirds (Tyrannus tyrannus): influence of lifespan, nest predation, and body size. Auk 124:1010–1022

    Article  Google Scholar 

  • Newton I (2010) The migration ecology of birds. Academic Press, London

    Google Scholar 

  • Outlaw DC (2011) Morphological evolution of some migratory Ficedula flycatchers. Contrib Zool 80:279–284

    Google Scholar 

  • Pennycuick CJ (1972) Animal flight. Arnold Press, London

    Google Scholar 

  • Pennycuick CJ (2008) Modelling the flying bird, vol 5. Elsevier, Toronto

    Google Scholar 

  • Peres-Neto P, Jackson D (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178

    Article  PubMed  Google Scholar 

  • Pérez-Tris J, Tellería JL (2001) Age related variation in wing shape of migratory and sedentary Blackcaps Sylvia atricapilla. J Avian Biol 32:207–213

    Article  Google Scholar 

  • Pyle P (1997) Identification guide to North American birds, Part I. Slate Creek Press Bolinas, California

    Google Scholar 

  • R Development Core Team (2016) R: a Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ralph CJ, Guepel GR, Pyle P et al (1993) Handbook of field methods for monitoring landbirds. U.S. Forest Service General Technical Report PSW-GTR-144, California

  • Rayner JMV (1988) Form and function in avian flight. Curr Ornithol 5:1–66

    Google Scholar 

  • Regosin JV, Pruett-Jones S (1995) Aspects of breeding biology and social organization in the Scissor-tailed Flycatcher. Condor 97:154–164

    Article  Google Scholar 

  • Rohlf FJ (1993) Relative warp analysis and an example of its application to mosquito wings. Contrib Morphometr 8:131–159

    Google Scholar 

  • Rohlf FJ (2016a). TpsDig 2.28. Available at http://life.bio.sunysb.edu/morph

  • Rohlf FJ (2016b). TpsRelw 1.65. Available at http://life.bio.sunysb.edu/morph

  • Rohlf FJ, Slice DE (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Smith WJ (1966) Communications and relationships in the genus Tyrannus. Publ Nuttall Ornithol Club 6:1–250

    Google Scholar 

  • Swaddle JP, Lockwood R (1998) Morphological adaptations to predation risk in passerines. J Avian Biol 29:172–176

    Article  Google Scholar 

  • Swaddle JP, Lockwood R (2003) Wingtip shape and flight performance in the European starling Sturnus vulgaris. Ibis 145:457–464

    Article  Google Scholar 

  • Thomas AL, Balmford A (1995) How natural selection shapes birds’ tails. Am Nat 146:848–868

    Article  Google Scholar 

  • Tobalsky BW (2007) Biomechanics of bird flight. J Exp Biol 210:3135–3146

    Article  Google Scholar 

  • Vágási CI, Pap PL, Vincze O et al (2016) Morphological adaptations to migration in birds. Evol Biol 43:48–59

    Article  Google Scholar 

  • van Oorschot BK, Mistick EA, Tobalske BW (2016) Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds. J Exp Biol 219:3146–3154

    Article  Google Scholar 

  • Vanhooydonck B, Herrel A, Gabela A et al (2009) Wing shape variation in the medium ground finch (Geospiza fortis): an ecomorphological approach. Biol J Linn Soc 98:129–138

    Article  Google Scholar 

  • Videler JJ (2006) Avian flight. Oxford University Press, Oxford

    Book  Google Scholar 

  • Videler JJ, Stamhuis EJ, Povel GDE (2004) Leading-edge vortex lifts swift. Science 306:1960–1962

    Article  PubMed  CAS  Google Scholar 

  • Voelker G (2001) Morphological correlates of migratory distance and flight display in the avian genus Anthus. Biol J Linn Soc 73:425–435

    Article  Google Scholar 

  • Wiersma P, Muñoz-Garcia A, Walker A, Williams JB (2007) Tropical birds have a slow pace of life. Proc Natl Acad Sci 104:9340–9345

    Article  PubMed  CAS  Google Scholar 

  • Winkler H, Leisler B (1992) On the ecomorphology of migrants. Ibis 134:21–28

    Article  Google Scholar 

  • Yong W, Moore FR (1994) Flight morphology, energetic condition, and the stopover biology of migrating thrushes. Auk 111:683–692

    Google Scholar 

Download references

Acknowledgements

We thank three anonymous reviewers and the Associate Editor, who provided many useful comments that greatly improved the manuscript. We are grateful to numerous assistants and collaborators, in particular J. Cereghetti, V.R. Cueto, V. Gómez-Bahamón, M.A. Pizo, M.Â. Marini, J.H. Sarasola and D.T. Tuero, without whom this project would not have been possible. We are grateful to the Fundación Elsa Shaw de Pearson for logistical support. This research was funded by Optics for the Tropics and the Fundação de Amparo á Pesquisa do Estado de São Paulo-Brazil (2012/17225-2, 2013/19116-9). Research was conducted in Argentina with approval from Subsecretaria de Ecologia, Gobierno de La Pampa, and Departamento de Flora y Fauna, Ministerio de Asuntos Agrarios, Provincia de Buenos Aires (Disposición 256/11), in Brazil by the Ministério do Meio Ambiente (40221-1) and COTEC-São Paulo (260108–008.399/2013), CEMAVE (3819/1). This study was approved by the Animal Use Ethics Commission at UNESP-Rio Claro under permit 3/2014. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex E. Jahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho Provinciato, I.C., Araújo, M.S. & Jahn, A.E. Drivers of wing shape in a widespread Neotropical bird: a dual role of sex-specific and migration-related functions. Evol Ecol 32, 379–393 (2018). https://doi.org/10.1007/s10682-018-9945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-018-9945-4

Keywords

Navigation