Skip to main content

Advertisement

Log in

Community structure and the spread of infectious disease in primate social networks

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Living in a large social group is thought to increase disease risk in wild animal populations, but comparative studies have provided mixed support for this prediction. Here, we take a social network perspective to investigate whether patterns of social contact within groups influence parasite risk. Specifically, increased modularity (i.e. sub-grouping) in larger groups could offset the increased disease risk associated with living in a large group. We simulated the spread of a contagious pathogen in random social networks to generate theoretically grounded predictions concerning the relationship between social network connectivity and the success of socially transmitted pathogens. Simulations yielded the prediction that community modularity (Q) negatively impacts parasite success. No clear predictions emerged for a second network metric we considered, the eigenvector centralization index (C), as the relationship between this measure and parasite success depended on the transmission probability of parasites. We then tested the prediction that Q reduces parasite success in a phylogenetic comparative analysis of social network modularity and parasite richness across 19 primate species. Using a Bayesian implementation of phylogenetic generalized least squares and controlling for sampling effort, we found that primates living in larger groups exhibited higher Q, and as predicted by our simulations, higher Q was associated with lower richness of socially transmitted parasites. This suggests that increased modularity mediates the elevated risk of parasitism associated with living in larger groups, which could contribute to the inconsistent findings of empirical studies on the association between group size and parasite risk. Our results indicate that social networks may play a role in mediating pressure from socially transmitted parasites, particularly in large groups where opportunities for transmitting communicable diseases are abundant. We propose that parasite pressure in gregarious primates may have favored the evolution of behaviors that increase social network modularity, especially in large social groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahumada JA (1992) Grooming behavior of spider monkeys (Ateles geoffroyi) on Barro Colorado Island, Panama. Int J Primatol 13(1):33–49

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Altizer S, Nunn CL, Thrall PH et al (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Ann Rev of Ecol Evol Syst 34:517–547

    Article  Google Scholar 

  • Arnold W, Lichtenstein AV (1993) Ectoparasite loads decrease the fitness of alpine marmots (Marmotamarmota) but are not a cost of sociality. Behav Ecol 4:36–39

    Article  Google Scholar 

  • Arnold C, Matthews LJ, Nunn CL (2010) The 10kTrees website: a new online resource for primate phylogeny. Evol Anthro 19:114–118

    Article  Google Scholar 

  • Boese GK (1975) Social behavior and ecological considerations of West African baboons (Papio papio). In: Tuttle RH (ed) Socioecology and psychology of primates. Mouton Publishers, The Hague, p 208

    Google Scholar 

  • Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2:113–120

    Article  Google Scholar 

  • Bonacich P (2007) Some unique properties of eigenvector centrality. Soc Netw 29(4):555–564

    Article  Google Scholar 

  • Bordes F, Morand S (2009) Parasite diversity: an overlooked metric of parasite pressure? Oikos 118:801–806

    Article  Google Scholar 

  • Butovskaya ML, Kozintsev AG, Kozintsev BA (1994) The structure of affiliative relations in a primate community: allogrooming in stumptailed macaques (Macaca arctoides). Hum Evol 9(1):11–23

    Article  Google Scholar 

  • Canright GS, Engo-Monson K (2006) Spreading on networks: a topographic view. Complexus 3:131–146

    Article  Google Scholar 

  • Chiarello AG (1995) Grooming in brown howler monkeys, Alouatta fusca. Am J Primatol 35:73–81

    Article  Google Scholar 

  • Clauset A (2005) Finding local community structure in networks. Phys Rev E 72:026132

    Article  CAS  Google Scholar 

  • Cooper MA, Bernstein IS, Hemelrijk CK (2005) Reconciliation and relationship quality in Assamese macaques (Macaca assamensis). Am J Primatol 65:269–282

    Article  PubMed  Google Scholar 

  • Côté IM, Poulin R (1995) Parasitism and group size in social animals: a meta-analysis. Behav Ecol 6(2):159–165

    Article  Google Scholar 

  • Di Fiore A, Rendall D (1994) Evolution of social organization: a reappraisal for primates by using phylogenetic methods. Proc Nat Acad Sci USA 91:9941–9945

    Article  PubMed  CAS  Google Scholar 

  • Diekmann O, De Jong MCM, Metz JJ (1998) A deterministic epidemic model taking account of repeated contacts between the same individuals. J Appl Prob 35(2):448–462

    Article  Google Scholar 

  • Dunbar RIM (1992) Time: a hidden constraint on the behavioural ecology of baboons. Behav Ecol Sociobiol 31(1):35–49

    Article  Google Scholar 

  • Dunbar RI, Dunbar EP (1976) Contrasts in social structure among black-and-white colobus groups. Anim Behav 24:84–92

    Article  PubMed  CAS  Google Scholar 

  • Dunbar RIM, Dunbar P (1988) Maternal time budgets of gelada baboons. Anim Behav 36:970–980

    Article  Google Scholar 

  • Ezenwa VO, Price SA, Altizer S et al (2006) Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. OIKOS 115:526–536

    Article  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429

    Article  PubMed  CAS  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Freeland WJ (1976) Pathogens and the evolution of primate sociality. Biotropica 8:12–24

    Article  Google Scholar 

  • Freeland WJ (1979) Primate social groups as biological islands. Ecol 60:719–728

    Article  Google Scholar 

  • Freeman LC (1979) Centrality in social networks: conceptual clarification. Soc Netw 1:215–239

    Article  Google Scholar 

  • Grimm V, Railsback SF (2005) Individual based modeling in ecology. Princeton University Press, Princeton

    Google Scholar 

  • Hart BL (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav Rev 14:273–294

    Article  PubMed  CAS  Google Scholar 

  • Harvey PH, Pagel MS (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Harvey PH, Rambaut A (1998) Phylogenetic extinction rates and comparative methodology. Proc R Soc Lond B Bio Sci 265:1691–1696

    Article  Google Scholar 

  • Hausfater G, Watson DF (1976) Social and reproductive correlates of parasite ova emissions by baboons. Nature 262:688–689

    Article  PubMed  CAS  Google Scholar 

  • Hernandez AD, Macintosh AJ, Huffman MA (2009) Primate parasite ecology: patterns and predictions from an ongoing study of Japanese macaques. In: Huffman MA, Chapman CA (eds) Primate parasite ecology: the dynamics and study of host-parasite relationships. Cambridge University Press, Cambridge

    Google Scholar 

  • Hess G (1996) Disease in metapopulation models: implications for conservation. Ecol 77:1617–1632

    Article  Google Scholar 

  • Hoogland L (1979) Aggression, ectoparasitism, and other possible costs of prairie dog (Sciuridae, Cynomys spp.) coloniality. Behav 69:1–35

    Article  Google Scholar 

  • Huang W, Li C (2007) Epidemic spreading in scale-free networks with community structure. J Stat Mech P01014

  • Huelsenbeck JP, Rannala B, Masly JP (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science 288:2349–2350

    Article  PubMed  CAS  Google Scholar 

  • Huffman MA, Chapman C (2009) Primate parasite ecology: the dynamics and study of Host-Parasite relationships (Studies in biological and evolutionary anthropology series). Cambridge University Press, Cambridge

    Google Scholar 

  • Hunkeler C, Bourliere F, Bertrand M (1972) Le comportement social de la Mone de Lowe (Cercopothecus campbelli lowei). Folia Primatol 17:218–236

    Article  PubMed  CAS  Google Scholar 

  • Ives AR, Midford PE, Garland T (2007) Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol 56(2):252–270

    Article  PubMed  Google Scholar 

  • Izawa K (1980) Social behavior of the wild black-capped capuchin (Cebus apella). Primates 21(4):443–467

    Article  Google Scholar 

  • Kaplan JR, Zucker E (1980) Social organization in a group of free-ranging patas monkeys. Folia Primatol 34:196–213

    Article  PubMed  CAS  Google Scholar 

  • Kasper C, Voelkl B (2009) A social network analysis of primate groups. Primates 50(4):343–356

    Article  PubMed  Google Scholar 

  • Keele B, Jones J, Terio K, Estes J, Rudicell R, Wilson M, Li Y, Learn G, Beasley T, Schumacher-Stankey J (2009) Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460:515–519

    Article  PubMed  CAS  Google Scholar 

  • Keeling MJ (1999) The effects of local spatial structure on epidemiological invasions. Proc R Soc Lond B 266:859–867

    Article  CAS  Google Scholar 

  • Kohler TA, Gumerman GJ (2000) Dynamics of human and primate societies: agent-based modeling of social and spatial processes. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Croft DP, James R (2007) Social network theory in the behavioural sciences: potential applications. Behav Ecol Socioecol 62(1):15–27

    Article  Google Scholar 

  • Kudo H, Dunbar RIM (2000) Neocortex size and social network size in primates. Anim Behav 62:711–722

    Article  Google Scholar 

  • Lindenfors P, Nunn CL, Jones KE et al (2007) Parasite species richness in carnivores: effects of host body mass, latitude, geographic range and population density. Global Biol Biogeo 16:496–509

    Article  Google Scholar 

  • Lloyd-Smith JO, Schreiber SJ, Kopp PE et al (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438(17):355–359

    Article  PubMed  CAS  Google Scholar 

  • Loehle C (1995) Social barriers to pathogen transmission in wild animal populations. Ecology 76:326–335

    Article  Google Scholar 

  • Lottker P, Huck M, Zinner DP, Heymann EW (2007) Grooming relationships between breeding females and adult group members in cooperatively breeding moustached tamarins (Saguinus mystax). Am J Primatol 69:1159–1172

    Article  PubMed  Google Scholar 

  • Lusseau D, Newman MEJ (2004) Identifying the role that individual animals play in their social network. Proc R Soc Lond B Biol Sci 271:S477–S481

    Article  Google Scholar 

  • Marquardt DW (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics 12(3):591–612

    Article  Google Scholar 

  • Martins EP, Garland T (1991) Phylogenetic analysis of the correlated evolution of continuous characters: a simulation study. Evol 45:534–557

    Article  Google Scholar 

  • McGrew WC, Tutin CEG, Collins DA et al (1989) Intestinal parasites of sympatric Pan troglodytes and Papio spp. at two sites: Gombe (Tanzania) and Mt. Assirik (Senegal). Am J Primatol 17:147–155

    Article  Google Scholar 

  • Møller AP, Dufva R, Allander K (1993) Parasites and the evolution of host social behavior. Adv Study Behav 22:65–102

    Article  Google Scholar 

  • Morand S, Harvey PH (2000) Mammalian metabolism, longevity and parasite species richness. Proc R Soc Lond B Biol Sci 267:1999–2003

    Article  CAS  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(026113):1–15

    Google Scholar 

  • Newman MEJ, Forrest S, Balthrop J (2002) Email networks and the spread of computer viruses. Phys Rev E 66:1–4

    Google Scholar 

  • Nunn CL (2002a) A comparative study of leukocyte counts and disease risk in primates. Evol 56:177–190

    Google Scholar 

  • Nunn CL (2002b) Spleen size, disease risk and sexual selection: a comparative study in primates. Evol Ecol Res 4:91–107

    Google Scholar 

  • Nunn CL (2011) The comparative approach in evolutionary anthropology and biology. University of Chicago Press, Chicago

    Google Scholar 

  • Nunn CL, Altizer S (2005) The Global Mammal Parasite Database: an online resource for infectious disease records in wild primates. Evol Anthro 14:1–2

    Article  Google Scholar 

  • Nunn CL, Altizer S (2006) Infectious diseases in primates: behavior, ecology and evolution. Oxford University Press, New York

    Book  Google Scholar 

  • Nunn CL, Gittleman JL, Antonovics J (2000) Promiscuity and the primate immune system. Science 290:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Nunn CL, Altizer S, Jones KE et al (2003) Comparative tests of parasite species richness in primates. Am Nat 162(5):597–614

    Article  PubMed  Google Scholar 

  • Nunn CL, Altizer S, Sechrest W, Jones KE, Barton RA, Gittleman JL (2004) Parasites and the evolutionary diversification of primate clades. Am Nat 164:S90–S103

    Article  PubMed  Google Scholar 

  • Nunn CL, Altizer SM, Sechrest W, Cunningham A (2005) Latitudinal gradients of disease risk in primates. Divers Distrib 11:249–256

    Article  Google Scholar 

  • Nunn CL, Thrall PH, Stewart K (2008) Emerging infectious diseases and animal social systems. Evol Ecol 22:519–543

    Article  Google Scholar 

  • Nunn CL, Thrall PH, Leendertz FH, Boesch C (2011) The spread of fecally transmitted parasites in socially-structured populations. PLoS One (in press)

  • Pagel M, Lutzoni F (2002) Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In: Lässig M, Valleriani A (eds) Biological evolution and statistical physics. Springer, Berlin, pp 148–161

    Chapter  Google Scholar 

  • Pagel M, Meade A (2007) BayesTraits (www.evolution.rdg.ac.uk). Reading, UK

  • Pederson A, Altizer S, Poss M, Cunningham AA, Nunn CL (2005) Patterns of host specificity and transmission among parasites in wild primates. Int J Parasitol 35:547–657

    Google Scholar 

  • Pederson A, Jones K, Nunn CL et al (2007) Infectious diseases and extinction risk in wild mammals. Conserv Biol 21:1269–1279

    Article  Google Scholar 

  • Petraitis PS, Dunham AE, Niewlarowski PH (1996) Inferring multiple causality: the limitations of path analysis. Funct Ecol 10:421–431

    Article  Google Scholar 

  • Poirier FE (1969) The Nilgiri langur (Presbytis johnii) troop: its composition, structure, function and change. Folia Primatol 10:20–47

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (1995) Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecol Monogr 65:283–302

    Article  Google Scholar 

  • Poulin R, Morand S (2004) Parasite biodiversity. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Purvis A, Gittleman JL, Luh H (1994) Truth or consequences: effects of phylogenetic accuracy on two comparative methods. J Theor Biol 167:293–300

    Article  Google Scholar 

  • Revell L (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1:319–329

    Article  Google Scholar 

  • Rowe N (1996) The pictorial guide to the living primates. Pogonias Press, East Hampton

    Google Scholar 

  • Ruhnau B (2000) Eigenvector centrality- a node centrality? Soc Netw 22:357–365

    Article  Google Scholar 

  • Sade SD (1971) Sociometrics of Macaca mulatta I. Linkages and cliques in grooming matrices. Folia Primatol 18:196–223

    Article  Google Scholar 

  • Salathé M, Jones JH (2010) Dynamics and control of diseases in networks with community structure. PLoS Comp Biol 6:e1000736

    Article  CAS  Google Scholar 

  • Semple S, Cowlishaw G, Bennett PM (2002) Immune system evolution among anthropoid primates: parasites, injuries and predators. Proc R Soc B Biol Sci 269:1031–1037

    Article  Google Scholar 

  • Shields WM, Crook JR (1987) Barn swallow coloniality- a net cost for group breeding in the adirondacks. Ecol 68:1373–1386

    Article  Google Scholar 

  • Smith KF, Sax DF, Lafferty KD (2006) Evidence for the role of infectious disease in species extinction and endangerment. Conserv Biol 20:1249–1357

    Article  Google Scholar 

  • Snaith T, Chapman C, Rothman J et al (2008) Bigger groups have fewer parasites and similar cortisol levels: a multi-group analysis in red colobus monkeys. Am J Primatol 70:1072–1080

    Article  PubMed  Google Scholar 

  • Stoner KE (1996) Prevalence and intensity of intestinal parasites in mantled howling monkeys (Alouatta palliata) in northeastern Costa Rica: implications for conservation biology. Conserv Biol 10:539–546

    Article  Google Scholar 

  • Strier KB (1992) Causes and consequences of non-aggression in the woolly spider monkey, or Miriqui. In: Silverberg J, Gray JP (eds) Aggression and peacefulness in humans and other primates. Oxford University Press, USA, p 109

    Google Scholar 

  • Sugiyama Y (1971) Characteristics of the social life of bonnet macaques (Macaca radiata). Primates 12:247–266

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (1989) Using multivariate statistics, 2nd edn. Harper and Row, Cambridge

    Google Scholar 

  • Takahashi H, Furuichi T (1998) Comparative study of grooming relationships among wild Japanese macaques in Kinkazan A troop and Yakushima M troop. Primates 39(3):365–374

    Article  Google Scholar 

  • van Hooff JARAM, van Schaik CP (1992) Cooperation in competition: the ecology of primate bonds. In: Harcourt AH, De Waal FBM (eds) Coalitions and alliances in humans and other animals. Oxford University Press, Oxford, pp 357–389

    Google Scholar 

  • van Schaik CP (1989) The ecology of social relationships amongst female primates. In: Standen V, Foley RA (eds) Comparative socioecology. Blackwell, Oxford, pp 195–218

    Google Scholar 

  • Vital C, Martins EP (2009) Using graph theory metrics to infer information flow through animal social groups: a computer simulation analysis. Ethology 115:347–355

    Article  Google Scholar 

  • Vitone ND, Altizer SM, Nunn CL (2004) Body size, diet and sociality influence the species richness of parasitic worms in anthropoid primates. Evol Ecol Res 6:1–17

    Google Scholar 

  • Vogt JL (1978) The social behavior of a marmoset (Saguinus fuscicollis) group II: behavior patterns and social interaction. Primates 19:287–300

    Article  Google Scholar 

  • Walther BA, Cotgreave P, Gregory RD et al (1995) Sampling effort and parasite species richness. Parasitol Today 11:306–310

    Article  PubMed  CAS  Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Watve MG, Jog MM (1997) Epidemic diseases and host clustering: an optimum cluster size ensures maximum survival. J Theor Biol 184:165–169

    Article  PubMed  CAS  Google Scholar 

  • Wey T, Blumstein DT, Shen W et al (2008) Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim Behav 75:33–344

    Article  Google Scholar 

  • Whitehead H (2008) Analyzing animal societies: quantitative methods for vertebrate social analysis. University of Chicago Press, Chicago

    Google Scholar 

  • Wilkinson GS (1985) The social-organization of the common vampire bat. 1. Pattern and cause of association. Behav Ecol Sociobiol 17:111–121

    Google Scholar 

  • Wilson K, Knell R, Boots M et al (2003) Group living and investment in immune defense: an interspecific analysis. J Anim Ecol 72:133–143

    Article  Google Scholar 

Download references

Acknowledgments

We thank Luke Matthews, Michael Mitzenmacher, Amanda Lobell, Natalie Cooper, Jamie Jones, Charles Mitchell, members of the Comparative Primatology Research Group at Harvard University, and anonymous reviewers for helpful comments. This research was supported by Harvard University, a Summer Undergraduate Research Fellowship (SURF) from the Harvard Initiative in Global Health (HIGH), and the National Science Foundation (BCS-0923791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Nunn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffin, R.H., Nunn, C.L. Community structure and the spread of infectious disease in primate social networks. Evol Ecol 26, 779–800 (2012). https://doi.org/10.1007/s10682-011-9526-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9526-2

Keywords

Navigation