Skip to main content
Log in

Characterization of a γ-tocopherol methyltransferase mutant gene in wild (Carthamus oxyacanthus M. Bieb.) and cultivated safflower (C. tinctorius L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Safflower (Carthamus tinctorius L.) seeds contain a high proportion of tocopherols (>90 %) in the α-tocopherol form. A mutant with a high concentration of γ-tocopherol (>85 %) was identified in germplasm of wild safflower (Carthamus oxyacanthus M. Bieb.) that showed strong introgression of C. tinctorius, which allowed selection of individuals of both species with high concentrations of either α- or γ-tocopherol. The trait is controlled by a γ-tocopherol methyltransferase (γ-TMT) locus. The objective of this research was to identify γ-TMT sequence mutations associated with the high γ-tocopherol trait. Full length genomic and cDNA sequences of the γ-TMT gene were obtained from plants of C. tinctorius and C. oxyacanthus with both tocopherol profiles. Sequences from high γ-tocopherol plants showed an 11 bp deletion in exon 6 of the γ-TMT gene that disrupted the reading frame and created a premature stop codon, resulting in a predicted protein with a drastically altered amino acid sequence downstream the frameshift site. The data suggested that the frameshift mutation was underlying the γ-TMT loss of function mutant allele that determines the high γ-tocopherol phenotype. The characterized sequence change of 11 bp deletion could be used directly as a functional marker for introgression of the high γ-tocopherol trait into elite safflower cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bergmüller E, Porfirova S, Dörmann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52(6):1181–1190

    Article  PubMed  Google Scholar 

  • Chow CK (2000) Vitamin E. In: Stipanuk MH (ed) Biochemical and physiological aspects of human nutrition. Saunders, PA, USA, pp 584–598

    Google Scholar 

  • Cupples CG (2003) Mutagenesis Mechanisms. eLS

  • DellaPenna D, Mène-Saffrané L (2011) Vitamin E. Adv Bot Res 59:179–227

    Article  CAS  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  PubMed  CAS  Google Scholar 

  • Dwiyanti MS, Yamada T, Sato M, Abe J, Kitamura K (2011) Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds. BMC Plant Biol 11(1):152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Endrigkeit J, Wang X, Cai D, Zhang C, Long Y, Meng J, Jung C (2009) Genetic mapping, cloning, and functional characterization of the BnaX.VTE4 gene encoding a γ-tocopherol methyltransferase from oilseed rape. Theor Appl Genet 119(3):567–575

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Cuesta A, Velasco L, Ruiz-Méndez MV (2014) Characterization of novel safflower oil with high γ-tocopherol content. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201300208

    Google Scholar 

  • Fernández-Martínez J, Domínguez-Giménez J, Jiménez A, Hernández L (1986) Use of the single seed descent method in breeding safflower (Carthamus tinctorius L.). Plant Breed 97(4):364–367

    Article  Google Scholar 

  • García-Moreno MJ, Fernández-Martínez JM, Velasco L, Pérez-Vich B (2011) Molecular tagging and candidate gene analysis of the high γ-tocopherol trait in safflower (Carthamus tinctorius L.). Mol Breed 28:367–379

    Article  Google Scholar 

  • García-Moreno MJ, Fernández-Martínez JM, Velasco L, Pérez-Vich B (2012) Genetic basis of unstable expression of high γ-tocopherol content in sunflower seeds. BMC Plant Biol 12:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Goffman FD, Velasco L, Thies W (1999) Quantitative determination of tocopherols in single seeds of rapeseed (Brassica napus L.). Lipid/Fett 101(4):142–145

    Article  CAS  Google Scholar 

  • Hass CG, Tang S, Leonard S, Traber M, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113(5):767–782

    Article  PubMed  CAS  Google Scholar 

  • Heaton TC, Knowles PF (1980) Registration of UC-148 and UC-149 male-sterile safflower germplasm. Crop Sci 20(4):554

    Article  Google Scholar 

  • Isnardy B, Wagner KH, Elmadfa I (2003) Effects of alpha-, gamma-, and delta-tocopherols on the autoxidation of purified rapeseed oil triacylglycerols in a system containing low oxygen. J Agric Food Chem 51:7775–7780

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Yang XH, Xu ST, Cai Y, Zhang DL, Han YJ, Li L, Zhang ZX, Gao SB, Li JS, Yan JB (2012) Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS ONE 7(5):e36807

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lipka AE, Gore MA, Magallanes-Lundback M, Mesberg A, Lin H, Tiede T, Chen C, Buell CR, Buckler ES, Rocheford T, DellaPenna D (2013) Genome-Wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3: Genes, Genomes, Genetics 3(8):1287–1299

    Article  Google Scholar 

  • Liscombe DK, Usera AR, O’Connor SE (2010) Homologue of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis. Proc Natl Acad Sci 107(44):18793–18798

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Magnani R, Nayak NR, Mazarei M, Dirk LM, Houtz RL (2007) Polypeptide substrate specificity of PsLSMT. A set domain protein methyltransferase. J Biol Chem 282(38):27857–27864

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marmesat S, Velasco L, Ruiz-Méndez MV, Fernández-Martínez JM, Dobarganes C (2008) Thermostability of genetically modified sunflower oils differing in fatty acid and tocopherol compositions. Eur J Lipid Sci Technol 110(8):776–782

    Article  CAS  Google Scholar 

  • Padley FB, Gunstone FD, Harwood JL (1994) Occurrence and characteristics of oils and fats. In: Gunstone FD, Harwood JL, Padley FB (eds) The Lipid Handbook. Chapman & Hall, London, pp 47–223

    Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5(2):69–76

    Article  PubMed  CAS  Google Scholar 

  • Shintani DK, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282(5396):2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ujiie A, Yamada T, Fujimoto K, Endo Y, Kitamura K (2005) Identification of soybean varieties with high α-tocopherol content. Breed Sci 55(2):123–125

    Article  CAS  Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez JM (2005) Identification and genetic characterization of a safflower mutant with a modified tocopherol profile. Plant Breed 124(5):459–463

    Article  CAS  Google Scholar 

  • Yanishlieva NV, Kamal-Eldin A, Marinova EM, Toneva AG (2002) Kinetics of antioxidant action of alpha- and gamma-tocopherols in sunflower and soybean triacylglycerols. Eur J Lipid Sci Technol 104:262–270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by the Spanish Ministry of Science and Innovation and the European Union FEDER funds (research project AGL2007-62834). The authors are grateful to Dr. María J. Giménez and Dr. Fernando Piston (Instituto de Agricultura Sostenible, CSIC) for their advice on experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Velasco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10681_2014_1149_MOESM1_ESM.pdf

Fig. S1. γ-tocopherol methyltransferase genomic DNA sequence alignment for high α-tocopherol Carthamus tinctorius lines CL-1 and Rancho, high α-tocopherol C. tinctorius line IASC-1, high α-tocopherol C. oxyacanthus selections PI426472-A5 and PI426472-A12, and high γ-tocopherol C. oxyacanthus selection PI426472-A10. The cDNA sequence of the safflower line CL-1 (CL-1_cDNA) is also included. (PDF 160 kb)

10681_2014_1149_MOESM2_ESM.pdf

Fig. S2. γ-tocopherol methyltransferase cDNA sequence alignment for Carthamus tinctorius lines CL-1 and Rancho, with high α-tocopherol content, and IASC-1, with high γ-tocopherol content. (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Moreno, M.J., Fernández-Martínez, J.M., Velasco, L. et al. Characterization of a γ-tocopherol methyltransferase mutant gene in wild (Carthamus oxyacanthus M. Bieb.) and cultivated safflower (C. tinctorius L.). Euphytica 200, 231–238 (2014). https://doi.org/10.1007/s10681-014-1149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1149-6

Keywords

Navigation