Skip to main content
Log in

Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In this contribution we review the state of the art for genetic resistance to powdery mildew, caused by Erysiphe pisi, in pea (Pisum sativum L.) and potential use of marker-assisted selection (MAS) for developing disease resistant cultivars. Powdery mildew is important in many production regions worldwide and reduces yield and crop quality when present in epidemic proportions. Although genetic resistance to powdery mildew is available (er1 and er2) and has been durable since its characterization in 1969, recently a new dominant gene (Er3) has been reported in Pisum fulvum, a wild relative of pea that is different from previously reported er1 and er2. The efficacy of these genes may be at risk from the point of view of new pathotypes and pathogens. Erysiphe trifolii has been reported that was not previously known as a pathogen of pea powdery mildew. A continued search for new and diverse resistant sources remains a priority in pea breeding and special emphasis should be paid to selection of resistance that will prolong durability of existing resistance genes. Marker assisted selection is a new emerging approach for target breeding that has been intensively employed especially in cereals and has recently got popularity among legume breeders. With the advancement of genomic research, especially related to quantitative traits loci, the MAS is potentially anticipated future technique for routine plant breeding that is scarce in legumes at present. In pea, various DNA markers have been reported linked to er1, er2 and Er3 at varying distances in different mapping populations that are currently being used in breeding programs. Currently MAS of single gene is the most powerful approach and successes have been witnessed. If single marker is not close enough to the gene of interest then two flanking markers are considerably utilized to improve the correct identification that is being successfully employed in MAS for powdery mildew resistance in pea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad Z, Ghafoor A, Iqbal SM, Iqbal MS (2001) Yield potential of local and exotic germplasm with special reference to powdery mildew disease in peas (Pisum sativum L.). Pak J Bot 33:251–255

    Google Scholar 

  • Ali SM, Sharma B, Ambrose MJ (1994) Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica 73:115–126

    Article  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  PubMed  CAS  Google Scholar 

  • Attanayake RN, Glawe DA, McPhee KE, Dugan FM, Chen W (2010) Erysiphe trifolii—a newly recognized powdery mildew pathogen of pea. Plant Pathol 59:712–720

    Article  CAS  Google Scholar 

  • Bai Y, Huang Cai C, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLs for tomato powdery mildew resistance (Oidium lycocersici) in Lycopersicon parviflorum G1. 1601 Co-localize with two qualitative powdery mildew resistance genes. Mol Pl-Microbe Interaction 16:169–176

    Article  CAS  Google Scholar 

  • Banyal DK, Tyagi PD (1997) Resistance of pea genotypes in relation by Erysiphe pisi. Crop Prot 16:51–55

    Article  Google Scholar 

  • Batlle I, Alston FH (1996) Genes determining leucine aminopeptidase and mildew resistance from the ornamental apple, “White Angel”. Theor Appl Genet 93:179–182

    Article  CAS  Google Scholar 

  • Berkenkamp B, Kirkham C (1991) Pea diseases in N.E. Saskatchewan, 1990. Can Plant Dis Surv 71:108

    Google Scholar 

  • Bohn M, Groh S, Khairullah MM, Hoisington DA, Utz HF, Melchinger AE (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. Intropical maize by cross validation and interdependent validation. Theor Appl Genet 103:1059–1067

    Article  Google Scholar 

  • Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. PNAS 108(19):7727–7732

    Article  PubMed  CAS  Google Scholar 

  • Carver TLW, Jones SW (1988) Colony development by Erysiphe graminis f.sp. hordei on isolated epidermis of barley coleoptile incubated under continuous light or short-day conditions. Trans Br Mycol Soc 90:114–116

    Article  Google Scholar 

  • Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM, Doussinault G (2001) A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103:962–971

    Article  CAS  Google Scholar 

  • Chattieng B, Kaga A, Han AK, Wang XW, Wongkaew S, Laosuwan P, Tomooka N, Vaughan DA (2002) Mapping a new source of resistance to powdery mildew in mungbean. Plant Breed 121:521–525

    Article  Google Scholar 

  • Cohen R (1993) A leaf disc assay for detection of resistance of melon to Sphaerotheca fuliginea Racc I. Plant Dis 77:513–517

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cousin R (1965) Etude de la resistance a loidium chez le pois. Annales de 1’ Amelioration des Plantes 15:93–97

    Google Scholar 

  • Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered Dwarf Bulrush (Typha minima) using next-generation sequencing technology. J Hered 101(6):789–793

    Article  PubMed  CAS  Google Scholar 

  • Curto M, Camafeita E, Lopez JA, Maldonado AM, Rubiales D, Jorrín Dr JV (2006) A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics 6:163–174

    Article  Google Scholar 

  • Datta S, Kaashyap M, Kumar S (2010) Amplification of chickpea-specific SSR primers in Cajanus species and their validity in diversity analysis. Plant Breed 129:334–340

    Article  CAS  Google Scholar 

  • Davidson J, Krysinska-Kaczmarek M, Kimber RBE, Ramsey MD (2004) Screening field pea germplasm for resistance to downy mildew (Peronospora viciae) and powdery mildew (Erysiphe pisi). Aust Plant Pathol 33:413–417

    Article  Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S, Beldeaux M, Cousin R, de Vienne D (1994) Restriction fragment length polymorphism analysis of loci with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  Google Scholar 

  • Dixon GR (1987) Powdery mildew of vegetables and allied crops. In: Speaure DM (ed) Powdery mildew. Academic Press, San Diego

  • Dreher K, Khairallah M, Ribaut J, Morris M (2003) Money matters (I): cost of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234

    Article  Google Scholar 

  • Ek M, Eklund M, Von Post R, Dayteg C, Henriksson T, Weibull P, Ceplitis A, Isaac P, Tuvesson S (2005) Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas 142:86–91

    Article  PubMed  CAS  Google Scholar 

  • Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, DSt Clair, Prince JA, Brookes AJ (2001) SNP association studies in Alzheimer’s disease highlight problems for complex disease analysis. Trends Genet 17:407–413

    Article  PubMed  CAS  Google Scholar 

  • Evans KM, James CM (2003) Identification of SCAR markers linked to Pl-w mildew resistance in apple. Theor Appl Genet 106:1178–1183

    PubMed  CAS  Google Scholar 

  • Falloon RE, Viljanen-Rollinson SLH (2001) Powdery mildew. In: Kraft JM, Plfleger FL (eds) Compendium of pea diseases and pests. American Phytopathological Society, St. Paul, pp 28–29

  • Falloon RE, Sutherland PW, Hallett IC (1989) Morphology of Erysiphe pisi on leaves of Pisum sativum. Can J Bot 67:3410–3416

    Article  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2006) Macroscopic and histological characterization of genes er-1 and er-2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:181–184

    Article  Google Scholar 

  • Fondevilla S, Rubiales D, Moreno MT, Torres AM (2008) Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Mol Breed 22(2):193–200

    Article  CAS  Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2011) Confirmation that the Er3 gene, conferring resistance to Erysiphe pisi in pea, is a different gene from er1 and er2 genes. Plant Breed 130(2):281–282

    Article  CAS  Google Scholar 

  • Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341

    Article  Google Scholar 

  • Ghafoor A, Arshad M (2008) Seed protein profiling of Pisum sativum (L) germplasm using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) for investigation of biodiversity. Pak J Bot 40(6):2315–2321

    CAS  Google Scholar 

  • Gritton ET, Ebert RD (1975) Interaction of planting date powdery mildew on pea plant performance. Am Soc Hort Sci 100:137–142

    Google Scholar 

  • Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Rathore PK, Singh JM (1995) Quantitative genetic analysis of powdery mildew resistance in pea. In: Proceedings of the European association for grain legume research. Copenhagen, Denmark, p 202

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–8

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Article  Google Scholar 

  • Hagedorn DJ (1985) Diseases of pea: their importance and opportunities for breeding for disease resistance. In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop: a basis for improvement. Butterworths, London, pp 205–213

  • Hagedorn DJ (1991) Handbook of pea diseases. University of Wisconsin, Madison

    Google Scholar 

  • Haley SD, Afanador L, Kelly JD (1994) Selection of monogenic pest resistance traits with coupling- and repulsion-phase RAPD markers. Crop Sci 34:1061–1066

    Article  Google Scholar 

  • Harlands SC (1948) Inheritance of immunity to powdery mildew in Peruvian forms of Pisum sativum. Heredity 2:263–269

    Article  Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG, Lawson DM (1994) Molecular marker linkage map for apple. J Hered 85:4–11

    PubMed  CAS  Google Scholar 

  • Heringa RJ, Norei AV, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18:163–169

    Google Scholar 

  • Hittalmani S, Shashidhar HE, Bagali PG, Huang N, Sidhu JS, Singh VP, Khush GS (2002) Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a double haploid rice population. Euphytica 125:207–214

    Article  CAS  Google Scholar 

  • Huang XQ, Roder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000a) Development of diagnostic PCR markers closely linked to tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000b) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407–414

    Article  CAS  Google Scholar 

  • Humphry ME, Magner T, McIntyre CL, Aitken EAB, Liu CJ (2003) Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome 46:738–744

    Article  PubMed  CAS  Google Scholar 

  • Hwang SF, Zhang XR, Strelkov SE, Chang KF, Turnbull GD, Vidmar J (2010) Effects of Erysiphe pisi on protein profiles and ribulose-1,5-bisphosphate carboxylase content in resistant and susceptible (Pisum sativum × Pisum fulvum) plants. J Plant Dis Plant Prot 1(117):15–23

    CAS  Google Scholar 

  • Iqbal SM, Ghafoor A, Ahmad Z, Ayub N (2001) Yield performance of promising pea cultivars under natural infection of powdery mildew. Pak J Phytopathol 13:61–63

    Google Scholar 

  • Janila P, Sharma B (2004) RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed 123:271–274

    Article  CAS  Google Scholar 

  • Johnson R (1984) A critical analysis of durable resistance. Annu Rev Phytopathol 22:309–330

    Article  Google Scholar 

  • Johnson E, Miklas PN, Stavely JR, Martinez-Cruzado JC (1995) Coupling- and repulsion-phase RAPDs for marker assisted selection of PI 181996 rust resistance in common bean. Theor Appl Genet 90:659–664

    Article  Google Scholar 

  • Katoch V, Sharma S, Pathania S, Banayal DK, Sharma SK, Rathour R (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25(2):229–237

    Article  CAS  Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Article  Google Scholar 

  • Kraft JM, Pfleger FL (2001) Compendium of pea diseases and pests, 2nd ed. APS Press, Saint Paul

  • Kraft JM, Kaiser WJ Jr (1993) Screening for disease resistance in pea. In: Singh KB, Saxena MC (eds) Breeding for stress tolerance in cool season food legumes. A Wiley-Sayce Co-Publication, New York, pp 123–144

  • Kumar H, Singh RB (1981) Genetic analysis of plant resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 30:147–151

    Article  Google Scholar 

  • Kumar J, Mir RR, Kumar N, Kumar A, Mohan A, Prabhu KV, Balyan HS, Gupta PK (2010) Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 33:145–217

    CAS  Google Scholar 

  • Kumar J, Choudhary AK, Ramesh K, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kurth J, Kolsch R, Simons V, Schulze-Lefert P (2001) A high-resolution genetic map and a diagnostic RFLP marker for the Mlg resistance locus to powdery mildew in barley. Theor Appl Genet 102:53–60

    Article  CAS  Google Scholar 

  • Langridge P, Lagudah E, Holton T, Appels R, Sharp P, Chalmers K (2001) Trends in genetic and genome analyses in wheat: a review. Aust J Agric Res 52:1043–1077

    Article  CAS  Google Scholar 

  • Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interaction between QTLs and genetic background. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Lewis BG, Matthews P (1985) The world germplasm of Pisum sativum: could it be used more effectively to produce health crop? In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop: a basis for improvement. Butterworths, London, pp 215–229

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, van de Weg E, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Linde M, Debener T (2003) Isolation and identification of eight races of powdery mildew of roses (Podosphaera pannosa) (Wallr.: Fr.) de Bary and the genetic analysis of the resistance gene Rpp1. Theor Appl Genet 107:256–262

    Article  PubMed  CAS  Google Scholar 

  • Linde M, Hattendorf A, Kaufmann H, Debener Th (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor Appl Genet 113:1081–1092

    Article  PubMed  CAS  Google Scholar 

  • Liu SM, LO’ Brien, Moore SG (2003) A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Aust J Exp Agric 43:373–378

    Article  Google Scholar 

  • Lohnes DG, Bernard RL (1992) Inheritance of resistance to powdery mildew in soybeans. Plant Dis 76:964–965

    Article  Google Scholar 

  • Melo LC, dos Santos J, Ferreira DF (2002) Mapping QTLs for reaction to powdery mildew and to angular leaf spot in common beans under different environments. Pesquisa Agropecuaria Brasilleira 37:1115–1126

    Article  Google Scholar 

  • Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T (2010) QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet 120:227–237

    Article  PubMed  Google Scholar 

  • Michelmore R (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 33:393–427

    Article  PubMed  CAS  Google Scholar 

  • Miklas PN, Hu JG, Grunwald NJ, Larsen KM (2006) Potential application of TRAP (targeted region amplified polymorphism) markers for mapping and tagging disease resistance traits in common bean. Crop Sci 46:910–916

    Article  CAS  Google Scholar 

  • Mishra SP, Shukla P (1984) Inheritance of powdery mildew resistance in pea. Z Pflanzenzuchtg 93:251–254

    Google Scholar 

  • Miyagi M, Humphry ME, Ma ZY, Lambrides CJ, Bateson M, Liu CJ (2004) Construction of bacterial artificial chromosome libraries and their application in developing PCR-based markers closely linked to a major locus conditioning bruchid resistance in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 110:151–156

    Article  PubMed  CAS  Google Scholar 

  • Monti L, Biddle AJ, Moreno MT, Plancquaert P (1994) Biotic and abiotic stresses of pulse crops in Europe. In: Muehlbauer FJ, Kaiser WJ (eds) Expanding the production and use of cool season food legume. Kluwer Academic Publishers, Dordrecht, pp 204–217

  • Munjal RL, Chenulu VV, Hora TS (1963) Assessment of losses due to powdery mildew (Erysiphe polygoni) on pea. Indian Phytopathol 19:260–267

    Google Scholar 

  • Narsinghani GG (1979) Inheritance of powdery mildew in peas. Indian Hort J 36:471–472

    Google Scholar 

  • Nisar M, Ghafoor A (2011) Linkage of a RAPD marker with powdery mildew resistance er-1 gene in Pisum sativum L. Russ J Genet 47(3):300–304

    Article  CAS  Google Scholar 

  • Nisar M, Ghafoor A, Khan MR, Qureshi AS (2006) Screening of Pisum sativum (L.) Germplasm against Erysiphe pisi Syd. in relation with vegetative traits and SDS-PAGE profile. Acta Biologica Cracoviensia Series Botanica 48:33–37

    Google Scholar 

  • Ondrej M, Dostalova R, Odstrcilova L (2005) Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri, a new pathogen of pea. Plant Prot Sci 41(3):95–103

    Google Scholar 

  • Orr DD, Burnett PA (1993) Survey of Radley pea in central Alberta—1992. Can Plant Dis Surv 73:100

    Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance gene in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  Google Scholar 

  • Pereira G, Leitão J (2010) Two powdery mildew resistance mutations induced by ENU in Pisum sativum L. affect the locus er1. Euphytica 171(3):345–354

    Article  CAS  Google Scholar 

  • Pereira G, Marques C, Ribeiro R, Formiga S, Dâmaso M, Sousa MT, Farinhó M, Leitão JM (2010) Identification of DNA markers linked to an induced mutated gene conferring resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 171(3):327–335

    Article  CAS  Google Scholar 

  • Pierce WH (1948) Resistance to powdery mildew in peas. Phytopathology 38:21

    Google Scholar 

  • Polzin KM, Lohnes DG, Nickell CD, Shoemaker RC (1994) Integration of Rps2, Rmd, and Rj2 into linkage group J of the soybean molecular map. J Hered 85:300–303

    CAS  Google Scholar 

  • Rajappan K, Yesuraja I (2000) Chemical control of powdery mildew of pea. Ann Plant Prot Sci 8(2):266–267

    Google Scholar 

  • Rakshit S, Mohapatra T, Mishra SK, Dasgupta SK, Sharma RP, Sharma B (2001) Marker assisted breeding for powdery mildew resistance in pea (Pisum sativum L.). J Genet Breed 55:343–348

    CAS  Google Scholar 

  • Ram RS (1992) Inheritance of powdery mildew resistance in peas (Pisum sativum L.). Exp Genet 8:37–40

    Google Scholar 

  • Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR (2010) Cross-genera legume SSR markers for analysis of genetic diversity in Lens species. Plant Breed 129(5):514–518

    CAS  Google Scholar 

  • Reilling TP (1984) Powdery mildew. In: Compendium of pea diseases. The American Phytopathological Society, St. Paul, pp 21–22

  • Rezende VF, Ramalho MAP, Corte HR (1999) Genetic control of common bean (Phaseolus vulgaris) resistance to powdery mildew (Erysiphe polygoni). Genet Mol Biol 22:233–236

    Article  Google Scholar 

  • Ribaut JM, Betran J (1999) Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5:531–541

    Article  Google Scholar 

  • Ribaut JM, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  • Ribaut JM, Hu X, Hoisington D, Gonzalez-De-Leon D (1997) Use of STSs and SSRs as rapid and reliable preselection tools in marker-assisted selection backcross scheme. Plant Mol Biol Rep 15:156–164

    Article  Google Scholar 

  • Ribaut JM, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565

    Article  Google Scholar 

  • Ribaut JM, Monneveux P, Glaszman JC, Leung H, Van Hintum T, de Vicente C (2008) International programs and the use of modern biotechnologies for crop improvement plant genetics and genomics: crops and models. Genomics Trop Crop Plants 1:21–61

    Article  Google Scholar 

  • Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13(2):213–218

    Article  PubMed  Google Scholar 

  • Richards A, Rebetzke GJ, Watt M, Condon AG, Spielmeyer W, Dolferus R (2010) Breeding for improved water productivity in temperature cereals: phenotyping, quantitative trait loci, markers and the selection environment. Funct Plant Biol 37(2):85–97

    Article  Google Scholar 

  • Rickert AM, Kim JH, Meyer S, Nagel A, Ballvora A, Oefner PJ, Gebhardt C (2003) First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J 1:399–410

    Article  PubMed  CAS  Google Scholar 

  • Rubiales D, Fernandez-Aparicio M, Moral A, Barilli E, Sillero JC, Fondevilla S (2009) Disease resistance in pea (Pisum sativum L.) types for autumn sowings in mediterranean environments. Czech J Genet Plant Breed 45(4):135–142

    Google Scholar 

  • Sarala K (1993) Linkage studies in pea (Pisum sativum L.) with reference to er gene for powdery mildew resistance and other genes. PhD thesis, Indian Agric Res Inst New Delhi

  • Saxena JK, Tripathi RM, Srivastava RL (1975) Powdery mildew resistance in pea (Pisum sativum L.). Curr Sci 44:746

    Google Scholar 

  • Saxena RK, Prathima C, Saxena KB, Hoisington DA, Singh NK, Varshney RK (2010) Novel SSR Markers for polymorphism detection in pigeon pea (Cajanus spp.). Plant Breed 129:142–148

    Article  CAS  Google Scholar 

  • Schroeder WT, Provvidenti R (1965) Breakdown of the er resistance to powdery mildew in Pisum sativum. Phytopathology 55:1075 (Abstr.)

    Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Article  Google Scholar 

  • Smith PH, Foster EM, Boyd LA, Brown JKM (1996) The early development of Erysiphe pisi on Pisum sativum L. Plant Pathol 45:302–309

    Article  Google Scholar 

  • Su H, Hwang SF, Chang KF, Conner RL, Howard RJ, Turbull GD, Blade SF (2004) Differences in the growth stages of Erysiphe pisi on cultivars on field pea (Pisum sativum L.). Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz 111:64–70

    Google Scholar 

  • Timmerman GM, Frew TJ, Weeden NF, Miller AL, Goulden DS (1994) Linkage analysis of er-1, a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theor Appl Genet 88:1050–1055

    Article  CAS  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1997a) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310

    Article  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD, Rashid KY (1997b) Pathogenic variation in Erysiphe pisi, the causal organism of powdery mildew of pea. Can J Plant Path 19:267–271

    Article  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1998) Identification of coupling and repulsion phase markers for powdery mildew resistance genes er1 in pea. Genome 41:440–444

    CAS  Google Scholar 

  • Tonguc M, Weeden NF (2010) Identification and mapping of molecular markers linked to er1 gene in pea. J Plant Mol Biol Biotechnol 1(1):1–5

    Google Scholar 

  • Torres AM, Roman B, Avila CM, Satovic Z, Rubiales D, Sillero JC, Cubero JI, Moreno MT (2006) Faba bean breeding for resistance against biotic stresses: towards application of marker technology. Euphytica 147:67–80

    Article  Google Scholar 

  • Torres AM, Avila CM, Gutierrez N, Palomino C, Moreno MT, Cubero JI (2010) Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Res 115(3):243–252

    Article  Google Scholar 

  • Vaid A, Tyagi PD (1997) Genetics of powdery mildew resistance in pea. Euphytica 96:203–206

    Article  Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12:1–9

    Article  Google Scholar 

  • Viljanen-Rollinson SLH, Guant RE, Frampton CMA, Falloon RE, McNeil DL (1998) Components of quantitative resistance to powdery mildew (Erysiphe pisi) in pea (Pisum sativum). Plant Pathol 47:137–147

    Article  Google Scholar 

  • Warkentin TD, Rashid KY, Zimmer RC (1995) Effectiveness of a detached leaf assay for determination of the reaction of pea plants to powdery mildew. Can J Plant Pathol 17:87–89

    Article  Google Scholar 

  • Warkentin TD, Rashid KY, Xue AG (1996) Fungicidal control of powdery mildew in field pea. Can J Plant Sci 76:933–935

    Article  CAS  Google Scholar 

  • Weeden NF, Timmerman G, Lu J (1994) Identification and mapping genes of economic significance. Euphytica 73:191–198

    Article  CAS  Google Scholar 

  • Wenzl P, Suchankova P, Carling J, Simkova H, Huttner E, Kubalakova M, Sourdille P, Paul E, Feuillet C, Kilian A, Dolezel J (2010) Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theor Appl Genet 121:465–474

    Article  PubMed  CAS  Google Scholar 

  • Werner K, Pellio B, Ordon F, Friedt W (2000) Development of an STS marker and SSRs suitable for marker-assisted selection for the BaMMV resistance gene rym9 in barley. Plant Breed 119:517–519

    Article  CAS  Google Scholar 

  • Witcombe JR, Virk DS (2001) Number of crosses and population size for participatory and classical plant breeding. Euphytica 122:451–462

    Article  Google Scholar 

  • Xue AG, Warkentin TD, Rashid KY, Kenaschuk EO, Platford RG (1995) Diseases of field pea in Manitoba in 1994. Can Plant Dis Surv 75:156–157

    Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Yu K, Park S, Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficacy and economics. Plant Breed 119:411–415

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The senior author acknowledges the receipt of an FAO post-doctorate fellowship at the USDA-ARS in Pullman, Washington, USA and the cooperation by the staff of the USDA-ARS Grain Legume Genetics and Physiology Research Unit is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghafoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghafoor, A., McPhee, K. Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica 186, 593–607 (2012). https://doi.org/10.1007/s10681-011-0596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0596-6

Keywords

Navigation