Skip to main content

Advertisement

Log in

A decision support system for the selection of sustainable biomass resources for bioenergy production

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

Bioenergy production from biomass is a multicriteria decision-making (MCDM) problem involving multidimensional criteria due to the vast range of resources available for consideration. In this paper, we propose a hybrid fuzzy technique for order preference by similarity to ideal solution (FTOPSIS) and analytical hierarchy process (AHP) that is able to tackle vagueness and ambiguity in data and produce weights for all criteria in the MCDM problem. By utilizing this methodology, different aspects of experts’ data evaluation including fuzzy values can be converted into crisp values. Accuracy in each decision matrix is ensured by determining the weights of the subcriteria. We then apply the model to sustainable biomass resource selection in Ghana. Specifically, we comprehensively review the sustainable criteria within the bioenergy domain namely social, environmental, and economic aspects together with thirteen subcriteria. The proposed model was applied to biomass resource alternatives including crop residue, animal manure, forest residue, energy crops, and municipal solid waste. Results show the weights of thirteen subcriteria to be within the range of 0.10340 and 0.05263. The FTOPSIS shows that animal manure may be the most desirable resource for bioenergy production in Ghana, followed by energy crop, municipal solid waste, forest residue, and crop residue, respectively. Engineering and energy planning problems with conflicting multicriteria data can be easily solved by using this proposed hybrid AHP/FTOPSIS framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas T, Issa M, Ilinca A (2020) Biomass Cogeneration: A Review. Journal of Sustainable Bioenergy Systems 10(1):1–15

    Article  CAS  Google Scholar 

  • Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renewable and sustainable energy reviews 14(3):919–937

    Article  CAS  Google Scholar 

  • Aboagye D, Banadda N, Kiggundu N, Kabenge I (2017) Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis. Renewable and Sustainable Energy Reviews 70:814–821

    Article  Google Scholar 

  • Acheampong M, Yu Q, Cansu Ertem F, Ebude Deba Enomah L, Tanim S, Eduful M, Vaziri M, Ananga E (2019) Is Ghana ready to attain Sustainable Development Goal (SDG) number 7 A comprehensive assessment of its renewable energy potential and pitfalls. Energies 12(3):408

  • Acuna M, Sessions J, Zamora R, Boston K, Brown M, Ghaffariyan MR (2019) Methods to manage and optimize forest biomass supply chains: A review. Current Forestry Reports 5(3):124–141

    Article  Google Scholar 

  • Ahiataku-Togobo W (2010) Progress made by Ghana on RE Project Implementation and lessons learned for AREA. https://area-net.org/wp-content/uploads/2016/01/W._Ahiataku-Togobo-GH_Ministry_of_Energy_Progress_made_by_Ghana_on_RE_Project_Implementation.pdf

  • Ahmed A, Gasparatos A (2016) Rapid Sustainability Appraisal of Collapsed Jatropha Projects in Ghana Using Local Community Perceptions: Methodological Implications for Sustainability Science. In: Esteban M., Akiyama T., Chen C., Ikeda I., Mino T. (eds) Sustainability Science: Field Methods and Exercises (pp. 199-227). Springer, Cham. https://doi.org/10.1007/978-3-319-32930-7_10

  • Alizadeh R, Soltanisehat L, Lund PD, Zamanisabzi H (2020) Improving renewable energy policy planning and decision-making through a hybrid MCDM method. Energy Policy 137:

    Article  Google Scholar 

  • Altman I, Johnson T, Liu Z (2019) An Economic Analysis of Biopwer Generation. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3410522

  • Apotei GK (2019) Biomass as an alternative source of energy in Ghana. https://www.theseus.fi/bitstream/handle/10024/267545/APOTEI%20GABRIEL%202019.pdf?sequence=2&isAllowed=y

  • Aragonés-Beltrán P, Pastor-Ferrando JP, García-García F, Pascual-Agulló A (2010) An analytic network process approach for siting a municipal solid waste plant in the metropolitan area of Valencia (Spain). Journal of Environmental Management 91(5):1071–1086

    Article  Google Scholar 

  • Aragonés-Beltrán P, García-Melón M, Montesinos-Valera J (2017) How to assess stakeholders' influence in project management? A proposal based on the Analytic Network Process. International journal of project management 35(3):451–62

    Article  Google Scholar 

  • Arkeman Y, Rizkyanti RA, Hambali E (2017) Determination of Indonesian palm-oil-based bioenergy sustainability indicators using fuzzy inference system. Conference Series: Earth and Environmental Science 65(1):012013

    Google Scholar 

  • Arthur R, Baidoo MF, Antwi E (2011) Biogas as a potential renewable energy source: A Ghanaian case study. Renewable Energy 36(5):1510–1516

    Article  CAS  Google Scholar 

  • Aşchilean I, Badea G, Giurca I, Naghiu GS, Iloaie FG (2017) Choosing the optimal technology to rehabilitate the pipes in water distribution systems using the AHP method. Energy Procedia 112:19–26

    Article  Google Scholar 

  • Ayamga EA, Kemausuor F, Addo A (2015) Technical analysis of crop residue biomass energy in an agricultural region of Ghana. Resour Conserv Recycl 96:51–60

    Article  Google Scholar 

  • Azasi VD, Offei F, Kemausuor F, Akpalu L (2020) Bioenergy from crop residues: a regional analysis for heat and electricity applications in Ghana. Biomass Bioenergy 140:105640

    Article  CAS  Google Scholar 

  • Barnett JB (2018) Addressing policy challenges to woody biopower production: social acceptance, biomass certification and limited policy support. Available from https://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1829&context=etdr

  • Basahel A, Taylan O (2016) Using fuzzy ahp and fuzzy topsis approaches for assessing safety conditions at worksites in construction industry. Int. J. SAFE 6:728–745. https://doi.org/10.2495/SAFE-V6-N4-728-745

    Article  Google Scholar 

  • Bentsen NS, Jack MW, Felby C, Thorsen BJ (2014) Allocation of biomass resources for minimising energy system greenhouse gas emissions. Energy 69:506–515

    Article  Google Scholar 

  • Beşikçi EB, Kececi T, Arslan O, Turan O (2016) An application of fuzzy-AHP to ship operational energy efficiency measures. Ocean Eng 121:392–402

    Article  Google Scholar 

  • Biswas A, Kumar S (2018) An integrated TOPSIS approach to MADM with interval-valued intuitionistic fuzzy settings. In: Bhattacharyya S, Chaki N, Konar D, Chakraborty U, Singh C (eds) Advanced computational and communication paradigms. Advances in intelligent systems and computing, vol 706. Springer, Singapore, pp 533–543. https://doi.org/10.1007/978-981-10-8237-5_52

    Chapter  Google Scholar 

  • Boamah F (2014) How and why chiefs formalise land use in recent times: the politics of land dispossession through biofuels investments in Ghana. Rev Afr Polit Econ 41:406–423. https://doi.org/10.1080/03056244.2014.901947

    Article  Google Scholar 

  • Brans JP, Vincke P, Mareschal B (1986) How to select and how to rank projects: the PROMETHEE method. Eur J Oper Res 24(2):228–238

    Article  Google Scholar 

  • Carayannis EG, Ferreira JJ, Jalali MS, Ferreira FA (2018) MCDA in knowledge-based economies: methodological developments and real-world applications. Technol Forecast Soc Change 131:1–3

    Article  Google Scholar 

  • Cavallaro F, Zavadskas EK, Raslanas S (2016) Evaluation of combined heat and power (CHP) systems using fuzzy shannon entropy and fuzzy TOPSIS. Sustainability 8(6):556

    Article  Google Scholar 

  • Cegan JC, Filion AM, Keisler JM, Linkov I (2017) Trends and applications of multi-criteria decision analysis in environmental sciences: literature review. Environ Syst Decis 37(2):123–133

    Article  Google Scholar 

  • Chakraborty S, Zavadskas EK, Antucheviciene J (2015) Applications of WASPAS method as a multi-criteria decision-making tool. Econom Comput Econom Cybernet Stud Res 49(1):5–22

    Google Scholar 

  • Chauhan A, Vaish R (2014) A comparative study on decision making methods with interval data. J Comput Eng. https://doi.org/10.1155/2014/793074

    Article  Google Scholar 

  • Chen P (2019) Effects of normalization on the entropy-based TOPSIS method. Expert Syst Appl 136:33–41

    Article  Google Scholar 

  • Chu TC (2002) Facility location selection using fuzzy TOPSIS under group decisions. Int J Uncertain Fuzziness Knowl Based Syst 10(06):687–701

    Article  Google Scholar 

  • Cobuloglu HI, Büyüktahtakın İE (2015) A stochastic multi-criteria decision analysis for sustainable biomass crop selection. Expert Syst Appl 42(15–16):6065–6074

    Article  Google Scholar 

  • Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agr Ecosyst Environ 135(4):268–278

    Article  CAS  Google Scholar 

  • Danquah V (2020) Sustainable Management of Ghana’s Sanitation using the REIM Model. In: 82nd EAGE Annual Conference & Exhibition, vol 2020, no 1, pp 1–5. European Association of Geoscientists & Engineers

  • Danquah JA, Roberts CO, Appiah M (2018) Elephant grass (Pennisetum purpureum): a potential source of biomass for power generation in Ghana. Curr J Appl Sci Technol. https://doi.org/10.9734/CJAST/2018/45224

    Article  Google Scholar 

  • Deni W, Sudana O, Sasmita A (2013) Analysis and implementation fuzzy multi-attribute decision making SAW method for selection of high achieving students in faculty level. Int J Comput Sci Issues 10(1):674

    Google Scholar 

  • Dey S, Kumar A, Ray A, Pradhan BB (2012) Supplier selection: integrated theory using DEMATEL and quality function deployment methodology. In: Procedia engineering, international conference on modelling optimization and computing 38, pp 3560–3565

  • Dokkar A, Settou N, Dokkar B (2018) Selecting suitable areas for new solar energy projects in the south of Algeria using combined GIS and MCDA Model. In: Kallel A, Ksibi M, Ben Dhia H, Khélifi N (eds) Recent advances in environmental science from the Euro-Mediterranean and surrounding regions. EMCEI 2017. Advances in science, technology & innovation (IEREK Interdisciplinary Series for Sustainable Development). Springer, Cham, pp 1493–1495

    Google Scholar 

  • Duku MH, Gu S, Hagan EB (2011) A comprehensive review of biomass resources and biofuels potential in Ghana. Renew Sustain Energy Rev 15(1):404–415

    Article  Google Scholar 

  • Ekşioğlu SD, Acharya A, Leightley LE, Arora S (2009) Analyzing the design and management of biomass-to-biorefinery supply chain. Comput Ind Eng 57(4):1342–1352

    Article  Google Scholar 

  • Ervural BC, Zaim S, Demirel OF, Aydin Z, Delen D (2018) An ANP and fuzzy TOPSIS-based SWOT analysis for Turkey’s energy planning. Renew Sustain Energy Rev 82:1538–1550

    Article  Google Scholar 

  • Eshun JF, Potting J, Leemans R (2010) Inventory analysis of the timber industry in Ghana. Int J Life Cycle Assess 15(7):715–725

    Article  CAS  Google Scholar 

  • Esmaili Dooki A, Bolhasani P, Fallah M (2017) An integrated fuzzy AHP and fuzzy TOPSIS approach for ranking and selecting the chief inspectors of bank: a case study. J Appl Res Ind Eng 4(1):8–23

    Google Scholar 

  • Faaij AP (2018) Securing sustainable resource availability of biomass for energy applications in Europe; review of recent literature. Available from https://bioenergyeurope.org/wp-content/uploads/2018/11/Bioenergy-Europe-EU-Biomass-Resources-Andr%C3%A9-Faaij-Final.pdf

  • Fadai D, Esfandabadi ZS, Abbasi A (2011) Analyzing the causes of non-development of renewable energy-related industries in Iran. Renew Sustain Energy Rev 15(6):2690–2695

    Article  Google Scholar 

  • Fritsche UR, Iriarte L (2014) Sustainability criteria and indicators for the bio-based economy in Europe: state of discussion and way forward. Energies 7(11):6825–6836

    Article  Google Scholar 

  • Genest C, Rivest L-P (1994) A statistical look at Saaty’s method of estimating pairwise preferences expressed on a ratio scale. J Math Psychol 38(4):477–496

    Article  Google Scholar 

  • Ghani NMAMA, Vogiatzis C, Szmerekovsky J (2018) Biomass feedstock supply chain network design with biomass conversion incentives. Energy Policy 116:39–49

    Article  Google Scholar 

  • Ghani NMAMA, Szmerekovsky JG, Vogiatzis C (2019) Plant capacity level and location as a mechanism for sustainability in biomass supply chain. Energy Syst 11:1075–1109

    Article  Google Scholar 

  • Gomes CFS, Costa HG, de Barros AP (2017) Sensibility analysis of MCDA using prospective in Brazilian energy sector. J Model Manag 12(3):475–497

    Article  Google Scholar 

  • Gonzales D, Searcy EM, Ekşioğlu SD (2013) Cost analysis for high-volume and long-haul transportation of densified biomass feedstock. Transp Res A 49:48–61

    Google Scholar 

  • Hanaki K, Portugal-Pereira J (2018) The effect of biofuel production on greenhouse gas emission reductions. In: Takeuchi K, Shiroyama H, Saito O, Matsuura M (eds) Biofuels and sustainability science for sustainable societies. Springer, Tokyo, pp 53–71

    Google Scholar 

  • Hartman JC, Nippert JB, Orozco RA, Springer CJ (2011) Potential ecological impacts of switchgrass (Panicum virgatum L.) biofuel cultivation in the Central Great Plains, USA. Biomass Bioenergy 35(8):3415–3421

    Article  Google Scholar 

  • Heo E, Kim J, Boo KJ (2010) Analysis of the assessment factors for renewable energy dissemination program evaluation using fuzzy AHP. Renew Sustain Energy Rev 14(8):2214–2220

    Article  Google Scholar 

  • Hu M (2019) Building impact assessment—a combined life cycle assessment and multi-criteria decision analysis framework. Resour Conserv Recycl 150:104410

    Article  Google Scholar 

  • Hwang CL, Yoon K (1981) Methods for multiple attribute decision making. Multiple Attribute Decis Making 186:58–191. https://doi.org/10.1007/978-3-642-48318-9_3

    Article  Google Scholar 

  • Iakovou E, Karagiannidis A, Vlachos D, Toka A, Malamakis A (2010) Waste biomass-to-energy supply chain management: a critical synthesis. Waste Manag 30(10):1860–1870

    Article  CAS  Google Scholar 

  • Janowiak MK, Webster CR (2010) Promoting ecological sustainability in woody biomass harvesting. J Forest 108(1):16–23

    Google Scholar 

  • Jorge A, Kubaski ET, Colmenero JC, Sequinel T, Sequinel R, Tebcherani SM (2015) Analytic hierarchy process applied to the choice of a long-life tomato (Lycopersicon esculentum Mill) drying system. Drying Technol 33(10):1180–1187

    Article  CAS  Google Scholar 

  • Kabak M, Dağdeviren M (2014) Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Convers Manag 79:25–33

    Article  Google Scholar 

  • Kahraman C, Engin O, Kabak Ö, Kaya İ (2009) Information systems outsourcing decisions using a group decision-making approach. Eng Appl Artif Intell 22(6):832–841

    Article  Google Scholar 

  • Kaleibari SS, Beiragh RG, Alizadeh R, Solimanpur M (2016) A framework for performance evaluation of energy supply chain by a compatible network data envelopment analysis model. Sci Iran 23(4):1904–1917

    Google Scholar 

  • Karatas M (2020) Hydrogen energy storage method selection using fuzzy axiomatic design and analytic hierarchy process. Int J Hydrogen Energy 45(32):16227–16238

    Article  CAS  Google Scholar 

  • Kaya T, Kahraman C (2011) Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Syst Appl 38(6):6577–6585

    Article  Google Scholar 

  • Kemausuor F, Akowuah JO, Ofori E (2013) Assessment of feedstock options for biofuels production in Ghana. J Sustain Bioenergy Syst 3:119–128

    Article  CAS  Google Scholar 

  • Kemausuor F, Kamp A, Thomsen ST, Bensah EC, Østergård H (2014) Assessment of biomass residue availability and bioenergy yields in Ghana. Resour Conserv Recycl 86:28–37

    Article  Google Scholar 

  • Kemausuor F, Nygaard I, Mackenzie G (2015) Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model. Energy 93:672–682

    Article  Google Scholar 

  • Kemausuor F, Bolwig S, Miller S (2016) Modelling the socio-economic impacts of modern bioenergy in rural communities in Ghana. Sustain Energy Technol Assess 14:9–20

    Google Scholar 

  • Koçak S, Kazaz A, Ulubeyli S (2018) Subcontractor selection with additive ratio assessment method. J Constr Eng Manag Innov 1(1):18–32

    Google Scholar 

  • Kok MT, Alkemade R, Bakkenes M, van Eerdt M, Janse J, Mandryk M, Kram T, Lazarova T, Meijer J, van Oorschot M, Westhoek H (2018) Pathways for agriculture and forestry to contribute to terrestrial biodiversity conservation: a global scenario-study. Biol Conserv 221:137–150

    Article  Google Scholar 

  • Kumar A, Sah B, Singh AR, Deng Y, He X, Kumar P, Bansal RC (2017) A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew Sustain Energy Rev 69:596–609

    Article  Google Scholar 

  • Larsen S, Bentsen NS, Stupak I (2019) Implementation of voluntary verification of sustainability for solid biomass—a case study from Denmark. Energy Sustain Soc 9(1):33

    Article  Google Scholar 

  • Łatuszyńska A (2014) Multiple-criteria decision analysis using topsis method for interval data in research into the level of information society development. Folia Oeconomica Stetinensia 13:63–76

    Article  Google Scholar 

  • Liu X, Chen Y (2013) A systematic approach to optimizing h value for fuzzy linear regression with symmetric triangular fuzzy numbers. Math Probl Eng 2013:1–13. https://doi.org/10.1155/2013/210164

    Article  Google Scholar 

  • Liu WB, Meng W, Li XX, Zhang DQ (2010) DEA models with undesirable inputs and outputs. Ann Oper Res 173(1):177–194

    Article  Google Scholar 

  • Maes D, Van Passel S (2014) Advantages and limitations of exergy indicators to assess sustainability of bioenergy and biobased materials. Environ Impact Assess Rev 45:19–29

    Article  Google Scholar 

  • Mardani A, Zavadskas E, Govindan K, Amat Senin A, Jusoh A (2016) VIKOR technique: a systematic review of the state-of-the-art literature on methodologies and applications. Sustainability 8(1):37

    Article  Google Scholar 

  • Medineckiene M, Zavadskas EK, Björk F, Turskis Z (2015) Multi-criteria decision-making system for sustainable building assessment/certification. Arch Civil Mech Eng 15(1):11–18

    Article  Google Scholar 

  • Merrouni AA, Elalaoui FE, Mezrhab A, Mezrhab A, Ghennioui A (2018) Large scale PV sites selection by combining GIS and analytical hierarchy process. Case study: Eastern Morocco. Renew Energy 119:863–873

    Article  Google Scholar 

  • Miezah K, Obiri-Danso K, Kádár Z, Heiske S, Fei-Baffoe B, Mensah M, Meyer AS (2017) Municipal solid waste management in a low-income economy through biogas and bioethanol production. Waste Biomass Valoriz 8(1):115–127

    Article  CAS  Google Scholar 

  • Ministry of Local Governent and Rural Development (2012) Ghana National Urban Policy: action plan, ministry of local government and rural development. pp 1–50. Available from https://www.nalag-ghana.org/wp-content/uploads/2019/03/national_urban_policy_framework_ghana_2012.pdf

  • Ministry of Energy (2011) Renewable Energy Act, 2011 (Act 832). Available from http://energycom.gov.gh/files/RENEWABLE%20ENERGY%20ACT%202011%20%28ACT%20832%29.pdf

  • Mohammed YS, Mokhtar AS, Bashir N, Saidur R (2013) An overview of agricultural biomass for decentralized rural energy in Ghana. Renew Sustain Energy Rev 20:15–25

    Article  Google Scholar 

  • Mohr A, Shortall O, Helliwell R, Raman S (2016) How should land be used? Bioenergy and responsible innovation in agricultural systems. In: Gordon I, Squire G, Prin H (eds) Food production and nature conservation: conflicts and solutions. Routledge, London, pp 204–222

    Google Scholar 

  • Moller RM (2005) Brief on biomass and cellulosic ethanol. California Research Bureau. Available from http://171.67.100.116/courses/2010/ph240/sangha1/docs/05-010.pdf

  • Nie RX, Wang JQ, Zhang HY (2017) Solving solar-wind power station location problem using an extended weighted aggregated sum product assessment (WASPAS) technique with interval neutrosophic sets. Symmetry 9(7):106

    Article  Google Scholar 

  • Nketiah SK, Atakora SB, Brew-Hammond A (2001) Ghana sawmill energy efficiency study. Final report. Intermediate Technology Consultants (ITC) and UK Department for International Development. Available from https://assets.publishing.service.gov.uk/media/57a08d64e5274a27b2001809/R74131.pdf

  • Obirih-Opareh N, Post J (2002) Quality assessment of public and private modes of solid waste collection in Accra, Ghana. Habitat Int 26(1):95–112

    Article  Google Scholar 

  • Oduro-Appiah K, Scheinberg A, Miezah K, Mensah A, de Vries NK (2020) Existing realities and sustainable pathways for solid waste management in Ghana. In: Pariatamby, A., Shahul Hamid, F., & Bhatti, M. S. (Ed.), Sustainable waste management challenges in developing countries. pp 115–143. IGI Global. https://doi.org/10.4018/978-1-7998-0198-6.ch005

  • Ofori-Boateng C, Lee KT, Mensah M (2013) The prospects of electricity generation from municipal solid waste (MSW) in Ghana: a better waste management option. Fuel Process Technol 110:94–102

    Article  CAS  Google Scholar 

  • Önüt S, Kara SS, Işik E (2009) Long term supplier selection using a combined fuzzy MCDM approach: a case study for a telecommunication company. Expert Syst Appl 36(2):3887–3895

    Article  Google Scholar 

  • Owusu-Sekyere E, Bagah DA, Quansah JYD (2015) The urban solid waste management conundrum in Ghana: will it ever end? World Environ 5(2):52–62

    Google Scholar 

  • Papapostolou A, Karakosta C, Doukas H (2017) Analysis of policy scenarios for achieving renewable energy sources targets: a fuzzy TOPSIS approach. Energy Environ 28(1–2):88–109

    Article  Google Scholar 

  • Partey ST, Frith OB, Kwaku MY, Sarfo DA (2017) Comparative life cycle analysis of producing charcoal from bamboo, teak, and acacia species in Ghana. Int J Life Cycle Assess 22(5):758–766

    Article  CAS  Google Scholar 

  • Peng H, Wang J, Ming J, Shi P, Pérez-Jiménez MJ, Yu W, Tao C (2017) Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE Transs Smart Grid 9(5):4777–4784

    Article  Google Scholar 

  • Perin G, Jones PR (2019) Economic feasibility and long-term sustainability criteria on the path to enable a transition from fossil fuels to biofuels. Curr Opin Biotechnol 57:175–182

    Article  CAS  Google Scholar 

  • Pishchulov G, Trautrims A, Chesney T, Gold S, Schwab L (2019) The Voting Analytic Hierarchy Process revisited: a revised method with application to sustainable supplier selection. Int J Prod Econ 211:166–179

    Article  Google Scholar 

  • Präger F, Paczkowski S, Sailer G, Derkyi NSA, Pelz S (2019) Biomass sources for a sustainable energy supply in Ghana—a case study for Sunyani. Renew Sustain Energy Rev 107:413–424

    Article  Google Scholar 

  • Prasad S, Singh A, Korres NE, Rathore D, Sevda S, Pant D (2020) Sustainable utilization of crop residues for energy generation: a life cycle assessment (LCA) perspective. Bioresour Technol 303:122964

    Article  CAS  Google Scholar 

  • Rahim R, Supiyandi S, Siahaan APU, Listyorini T, Utomo AP, Triyanto WA, Irawan Y, Aisyah S, Khairani M, Sundari S, Khairunnisa K (2017) TOPSIS method application for decision support system in internal control for selecting best employees. J Phys: Conf Ser 1028(1):012052

    Google Scholar 

  • Ramirez-Contreras NE, Faaij AP (2018) A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia. Renew Sustain Energy Rev 96:460–478

    Article  Google Scholar 

  • Rentizelas AA, Tolis AJ, Tatsiopoulos IP (2009) Logistics issues of biomass: the storage problem and the multi-biomass supply chain. Renew Sustain Energy Rev 13(4):887–894

    Article  Google Scholar 

  • Renzaho AM, Kamara JK, Toole M (2017) Biofuel production and its impact on food security in low- and middle-income countries: implications for the post-2015 sustainable development goals. Renew Sustain Energy Rev 78:503–516

    Article  Google Scholar 

  • Roach TP (2016) Decision making methods for water resources management under deep uncertainty. PhD Thesis, University of Exeter. https://ore.exeter.ac.uk/repository/bitstream/handle/10871/25756/RoachT.pdf?sequence=1&isAllowed=y

  • Rolita L, Surarso B, Gernowo R (2018) The Decisio Making Trial and Evaluation Laboratory (Dematel) and Analytic Network Process (ANP) for safety management system evaluation performance. E3S web of conferences 31, p 12006

  • Roni MS, Eksioglu SD, Searcy E, Jha K (2014) A supply chain network design model for biomass co-firing in coal-fired power plants. Transp Res E 61:115–134

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process, planning, priority. Resource allocation. RWS Publications, Pittsburgh

    Google Scholar 

  • Sadovski A (2019) Method for determination of planting and harvesting dates by fuzzy regression. Ecol Eng Environ Prot 1:38–45

    Google Scholar 

  • Sahir SH, Rosmawati R, Minan K (2017) Simple additive weighting method to determining employee salary increase rate. Int J Sci Res Sci Technol 3(8):42–48

    Google Scholar 

  • Scarlat N, Dallemand J-F, Monforti-Ferrario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34

    Article  Google Scholar 

  • Scarlat N, Fahl F, Dallemand JF (2019) Status and opportunities for energy recovery from municipal solid waste in Europe. Waste Biomass Valoriz 10(9):2425–2444

    Article  Google Scholar 

  • Schwerhoff G, Sy M (2017) Financing renewable energy in Africa-Key challenge of the sustainable development goals. Renew Sustain Energy Rev 75:393–401

    Article  Google Scholar 

  • Seglah PA, Wang Y, Wang H, Bi Y (2019) Estimation and efficient utilization of straw resources in Ghana. Sustainability 11(15):4172

    Article  Google Scholar 

  • Sharma KD, Ayyub M, Saroha S, Handershot AF (2014) Advanced controllers using fuzzy logic controller (FLC) for performance improvement. Int Electr Eng J 5:1452–1458

    Google Scholar 

  • Singh R, Kemausuor F, Wooldridge M (2018a) Locational analysis of cellulosic ethanol production and distribution infrastructure for the transportation sector in Ghana. Renew Sustain Energy Rev 98:393–406

    Article  Google Scholar 

  • Singh T, Patnaik A, Chauhan R, Chauhan P (2018b) Selection of brake friction materials using hybrid analytical hierarchy process and vise kriterijumska optimizacija kompromisno resenje approach. Polym Compos 39(5):1655–1662

    Article  CAS  Google Scholar 

  • Sofita YR, Ruskan EL (2019) Pengembangan sistem pendukung keputusan pemilihan presenter menggunakan metode vise kriterijumska optimizacija i kompromisno resenje (vikor). Doctoral dissertation, Sriwijaya University

  • Stanujkic D, Karabasevic D, Zavadskas EK (2015) A framework for the selection of a packaging design based on the SWARA method. Eng Econ 26(2):181–187

    Article  Google Scholar 

  • Suganthi L, Iniyan S, Samuel AA (2015) Applications of fuzzy logic in renewable energy systems—a review. Renew Sustain Energy Rev 48:585–607

    Article  Google Scholar 

  • Sun R (2010) Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose. Elsevier, Amsterdam

    Google Scholar 

  • Thiffault E, Barrette J, Paré D, Titus BD, Keys K, Morris DM, Hope G (2014) Developing and validating indicators of site suitability for forest harvesting residue removal. Ecol Ind 43:1–18

    Article  Google Scholar 

  • Torfi F, Farahani RZ, Rezapour S (2010) Fuzzy AHP to determine the relative weights of evaluation criteria and Fuzzy TOPSIS to rank the alternatives. Appl Soft Comput 10(2):520–528

    Article  Google Scholar 

  • Tzeng CS, Hui CF, Shen SC, Huang PC (1992) The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res 20(18):4853–4858

    Article  CAS  Google Scholar 

  • Vafaeipour M, Zolfani SH, Varzandeh MHM, Derakhti A, Eshkalag MK (2014) Assessment of regions priority for implementation of solar projects in Iran: new application of a hybrid multi-criteria decision-making approach. Energy Convers Manag 86:653–663

    Article  Google Scholar 

  • Van Hilst F, Hoefnagels R, Junginger M, Shen L, Wicke B (2017) Sustainable biomass for energy and materials: a greenhouse gas emission perspective. Copernicus Institute of Sustainable Development Working Paper, Utrecht

  • Vesilind PA, Worrell WA (2011) Solid waste engineering, second edition. CENGAGE Learning Custom Publishing, OH. ISBN13 9781439062173

  • Wang JW, Cheng CH, Huang KC (2009) Fuzzy hierarchical TOPSIS for supplier selection. Appl Soft Comput 9(1):377–386

    Article  Google Scholar 

  • Wang Z, Ren J, Goodsite ME, Xu G (2018) Waste-to-energy, municipal solid waste treatment, and best available technology: comprehensive evaluation by an interval-valued fuzzy multi-criteria decision-making method. J Clean Prod 172:887–899

    Article  Google Scholar 

  • Wang Z, Ran Y, Chen Y, Yu H, Zhang G (2020) Failure mode and effects analysis using extended matter-element model and AHP. Comput Ind Eng 140:106233

    Article  Google Scholar 

  • Welford R (2016) Corporate environmental management 3: towards sustainable development. Routledge. ISBN 9781138966796

  • Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56

    Article  CAS  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  • Zamani-Sabzi H, King JP, Gard CC, Abudu S (2016) Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Oper Res Perspect 3:92–117

    Google Scholar 

  • Zanette B, Stirrat E, Jelveh S, Hope A, Santyr G (2017) Detection of regional radiation-induced lung injury using hyperpolarized 129Xe chemical shift imaging in a rat model involving partial lung irradiation: proof-of-concept demonstration. Adv Radiat Oncol 2:475–484

    Article  Google Scholar 

  • Zavadskas EK, Turskis Z (2010) A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol Econ Dev Econ 16(2):159–172

    Article  Google Scholar 

  • Zavadskas EK, Antucheviciene J, Hajiagha SHR, Hashemi SS (2014) Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Appl Soft Comput 24:1013–1021

    Article  Google Scholar 

  • Zavadskas EK, Mardani A, Turskis Z, Jusoh A, Nor KM (2016) Development of TOPSIS method to solve complicated decision-making problems—an overview on developments from 2000 to 2015. Int J Inf Technol Decis Making 15(03):645–682

    Article  Google Scholar 

  • Zhou J, Wu Y, Wu C, Deng Z, Xu C, Hu Y (2019) A hybrid fuzzy multi-criteria decision-making approach for performance analysis and evaluation of park-level integrated energy system. Energy Convers Manag 201:112134

    Article  Google Scholar 

  • Zolfani SH, Saparauskas J (2013) New application of SWARA method in prioritizing sustainability assessment indicators of energy system. Eng Econ 24(5):408–414

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Ms. RNO-B and FK both of the Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. All authors read and approved the final manuscripts.

Corresponding author

Correspondence to F. Kemausuor.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ossei-Bremang, R.N., Kemausuor, F. A decision support system for the selection of sustainable biomass resources for bioenergy production. Environ Syst Decis 41, 437–454 (2021). https://doi.org/10.1007/s10669-021-09810-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-021-09810-6

Keywords

Navigation