Skip to main content

Advertisement

Log in

The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The rapid increases in ecological footprint and air pollution have followed the fast expansion of the global economy. Urbanization has aggravated environmental strain because of population surge, but the development in the degree of technological innovation would counter balance this negative effect. Hence, in this paper we examine the dynamic impact of urbanization, economic structure, technological innovation and population density on ecological footprint and air quality (PM2.5) in Newly Industrialized Countries (NICs) from 1990 to 2017. The study uses other variables like population density, energy consumption, and life expectancy to find out the long-run relationship among variables. We apply Westerlund co-integration, Mean Group (MG) and Pooled Mean Group (PMG) technique to ascertain the long-run and short-run associations among the variables. For robustness check, we use Augmented Mean Group (AMG) and Common Correlated Mean Group (CCEMG) approach. This study would be the first study in case 10 NICs considered the determinants of ecological footprint and PM2.5. The results reveal that economic growth increases ecological footprint in NICs in long run. Similarly, coefficient of industrialization is positive and significantly related to ecological footprint. However, the service sector shows a negative relation with ecological footprint in NICs. It means service sector helps to improve the environmental quality in long run. Population density, urbanization, energy consumption and life expectancy indicate a positive effect on ecological footprint. Further, in case of PM2.5, the results suggest that economic growth and industrial sectors have high magnitude effects on the PM2.5 than the other variables. The service sector reduces PM2.5, whereas the coefficient value is not significant, but agriculture sector positively influences PM2.5 in NICs. Similarly, population density and urbanization contribution to PM2.5 are positive and significant. Hence, these NICs countries should focus more on the investment in the renewable energy sector and make stringent environmental policy for protecting the nations from environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Availability of data and materials

The datasets generated and/or analyzed during the current study are available in the World Development Indicators (2019), Energy Information Administration and Global Footprint Network. Links: https://databank.worldbank.org/source/world-development-indicators#. Link: https://www.eia.gov/totalenergy/. Link: https://www.footprintnetwork.org/.

Notes

  1. “International Organizations and Groups. The World Fact book. Central Intelligence Agency. Retrieved 28 September 2020”.

References

  • Abouie-Mehrizi, M., Atashi, S. M., & Elahi, M. (2012). The effect of variables population growth, urbanization and economic growth on CO2 Emissions in Iran. African Journal of Business Management, 6(28), 8414–8419. https://doi.org/10.5897/AJBM11.2020.

    Article  Google Scholar 

  • Ahmad, M., Zhao, Z. Y., & Li, H. (2019). Revealing stylized empirical interactions among construction sector, urbanization, energy consumption, economic growth and CO2 emissions in China. Science of the Total Environment, 657, 1085–1098. https://doi.org/10.1016/j.scitotenv.2018.12.112.

    Article  CAS  Google Scholar 

  • Ahmad, M., Jiang, P., Majeed, A., Umar, M., Khan, Z., & Muhammad, S. (2020). The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resources Policy. https://doi.org/10.1016/j.resourpol.2020.101817.

    Article  Google Scholar 

  • Ahmad, M., Jiang, P., Murshed, M., Shehzad, K., Akram, R., Cui, L., & Khan, Z. (2021). Modelling the dynamic linkages between eco-innovation, urbanization, economic growth and ecological footprints for G7 countries: Does financial globalization matter? Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2021.102881.

    Article  Google Scholar 

  • Ahmed, Z., Asghar, M. M., Malik, M. N., & Nawaz, K. (2020a). Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resources Policy. https://doi.org/10.1016/j.resourpol.2020.101677.

    Article  Google Scholar 

  • Ahmed, Z., Zafar, M. W., & Ali, S. (2020b). Linking urbanization, human capital, and the ecological footprint in G7 countries: An empirical analysis. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2020.102064.

    Article  Google Scholar 

  • Ali, H. S., Law, S. H., & Zannah, T. I. (2016). Dynamic impact of urbanization, economic growth, energy consumption, and trade openness on CO 2 emissions in Nigeria. Environmental Science and Pollution Research, 23(12), 12435–12443.

    Article  Google Scholar 

  • Ali, R., Bakhsh, K., & Yasin, M. A. (2019). Impact of urbanization on CO2 emissions in emerging economy: Evidence from Pakistan. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2019.101553.

    Article  Google Scholar 

  • Al-Mulali, U., Weng-Wai, C., Sheau-Ting, L., & Mohammed, A. H. (2015). Investigating the environmental Kuznets curve (EKC) hypothesis by utilizing the ecological footprint as an indicator of environmental degradation. Ecological Indicators, 48, 315–323. https://doi.org/10.1016/j.ecolind.2014.08.029.

    Article  Google Scholar 

  • Alvarez-Herranz, A., Balsalobre-Lorente, D., Shahbaz, M., & Cantos, J. M. (2017). Energy innovation and renewable energy consumption in the correction of air pollution levels. Energy Policy, 105, 386–397. https://doi.org/10.1016/j.enpol.2017.03.009.

    Article  CAS  Google Scholar 

  • Anjum, M. S., Ali, S. M., Subhani, M. A., Anwar, M. N., Nizami, A. S., Ashraf, U., & Khokhar, M. F. (2020). An emerged challenge of air pollution and ever-increasing particulate matter in Pakistan; a critical review. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2020.123943.

    Article  Google Scholar 

  • Ansari, M. A., Haider, S., & Khan, N. A. (2020). Environmental Kuznets curve revisited: An analysis using ecological and material footprint. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2020.106416.

    Article  Google Scholar 

  • Arouri, M. E. H., Youssef, A. B., M'henni, H., & Rault, C. (2012). Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy policy 45: 342–349 https://doi.org/10.1016/j.enpol.2012.02.042.

  • Arrow, K., Bolin, B., Costanza, R., Dasgupta, P., Folke, C., Holling, C. S., & Pimentel, D. (1995). Economic growth, carrying capacity, and the environment. Ecological Economics, 15(2), 91–95.

    Article  Google Scholar 

  • Aşıcı, A. A., & Acar, S. (2016). Does income growth relocate ecological footprint? Ecological Indicators, 61, 707–714. https://doi.org/10.1016/j.ecolind.2015.10.022.

    Article  Google Scholar 

  • Atabani, A. E., Badruddin, I. A., Mekhilef, S., & Silitonga, A. S. (2011). A review on global fuel economy standards, labels and technologies in the transportation sector. Renewable and Sustainable Energy Reviews, 15(9), 4586–4610. https://doi.org/10.1016/j.rser.2011.07.092.

    Article  Google Scholar 

  • Baloch, M. A., Ozturk, I., Bekun, F. V., & Khan, D. (2021). Modeling the dynamic linkage between financial development, energy innovation, and environmental quality: Does globalization matter? Business Strategy and the Environment, 30(1), 176–184.

    Article  Google Scholar 

  • Baloch, M. A., Zhang, J., Iqbal, K., & Iqbal, Z. (2019). The effect of financial development on ecological footprint in BRI countries: Evidence from panel data estimation. Environmental Science and Pollution Research, 26(6), 6199–6208. https://doi.org/10.1007/s11356-018-3992-9.

    Article  Google Scholar 

  • Barbera, E., Curro, C., & Valenti, G. (2010). A hyperbolic model for the effects of urbanization on air pollution. Applied Mathematical Modelling, 34(8), 2192–2202.

    Article  Google Scholar 

  • Barnes, S. J. (2019). Understanding plastics pollution: The role of economic development and technological research. Environmental Pollution, 249, 812–821. https://doi.org/10.1016/j.envpol.2019.03.108.

    Article  CAS  Google Scholar 

  • Baz, K., Xu, D., Ali, H., Ali, I., Khan, I., Khan, M. M., & Cheng, J. (2020). Asymmetric impact of energy consumption and economic growth on ecological footprint: Using asymmetric and nonlinear approach. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.137364.

    Article  Google Scholar 

  • Beall, J., & Fox, S. (2007). Urban poverty and development in the 21st century: Towards an inclusive and sustainable world.

  • Behera, S. R., & Dash, D. P. (2017). The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region. Renewable and Sustainable Energy Reviews, 70, 96–106. https://doi.org/10.1016/j.rser.2016.11.201.

    Article  CAS  Google Scholar 

  • Bekun, F. V., Alola, A. A., & Sarkodie, S. A. (2019). Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Science of the Total Environment, 657, 1023–1029. https://doi.org/10.1016/j.scitotenv.2018.12.104.

    Article  CAS  Google Scholar 

  • Bello, M. O., Solarin, S. A., & Yen, Y. Y. (2018). The impact of electricity consumption on CO2 emission, carbon footprint, water footprint and ecological footprint: The role of hydropower in an emerging economy. Journal of Environmental Management, 219, 218–230. https://doi.org/10.1016/j.jenvman.2018.04.101.

    Article  Google Scholar 

  • Benetello, F., Squizzato, S., Hofer, A., Masiol, M., Khan, M. B., Piazzalunga, A., & Pavoni, B. (2017). Estimation of local and external contributions of biomass burning to PM 2.5 in an industrial zone included in a large urban settlement. Environmental Science and Pollution Research, 24(2): 2100–2115. https://doi.org/10.1007/s11356-016-7987-0.

  • Bhujabal, P., Sethi, N., & Padhan, P. C. (2021). ICT, foreign direct investment and environmental pollution in major Asia Pacific countries. Environmental Science and Pollution Research, 5, 1–21.

    Google Scholar 

  • Bilgili, F., Ulucak, R., & Koçak, E. (2019). Implications of environmental convergence: continental evidence based on ecological footprint. In Energy and environmental strategies in the era of globalization (pp. 133–165). Cham: Springer. Retrieved from https://doi.org/10.1007/978-3-030-06001-5.

  • Borck, R., & Schrauth, P. (2021). Population density and urban air quality. Regional Science and Urban Economics. https://doi.org/10.1016/j.regsciurbeco.2020.103596.

    Article  Google Scholar 

  • Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., & Boutin, S. (2015). Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology, 52(3), 675–685.

    Article  Google Scholar 

  • Carlstein, T. (2019). Time resources, society and ecology: On the capacity for human interaction in space and time (Vol 1). Routledge. Retrieved from https://www.routledge.com/Time-Resources-Society-and-Ecology-On-the-Capacity-for-Human-Interaction/Carlstein/p/book/9780367349677.

  • Charfeddine, L., & Mrabet, Z. (2017). The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renewable and Sustainable Energy Reviews, 76, 138–154. https://doi.org/10.1016/j.rser.2017.03.031.

    Article  Google Scholar 

  • Chen, B., & Kan, H. (2008). Air pollution and population health: A global challenge. Environmental Health and Preventive Medicine, 13(2), 94–101.

    Article  CAS  Google Scholar 

  • Chen, H., Jia, B., & Lau, S. S. Y. (2008). Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized economy. Habitat International, 32(1), 28–40.

    Article  Google Scholar 

  • Chen, J., Wang, B., Huang, S., & Song, M. (2020). The influence of increased population density in China on air pollution. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139456.

    Article  Google Scholar 

  • Chen, J., Zhou, C., Wang, S., & Li, S. (2018). Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2. 5 concentrations in countries globally. Applied Energy, 230, 94–105. https://doi.org/10.1016/j.apenergy.2018.08.089.

    Article  Google Scholar 

  • Chen, S., Jefferson, G. H., & Zhang, J. (2011). Structural change, productivity growth and industrial transformation in China. China Economic Review, 22(1), 133–150. https://doi.org/10.1016/j.chieco.2010.10.003.

    Article  Google Scholar 

  • Coffin, A. W. (2007). From roadkill to road ecology: A review of the ecological effects of roads. Journal of Transport Geography, 15(5), 396–406. https://doi.org/10.1016/j.jtrangeo.2006.11.006.

    Article  Google Scholar 

  • Cohen, B. (2006). Urbanization in developing countries: Current trends, future projections, and key challenges for sustainability. Technology in Society, 28(1–2), 63–80.

    Article  Google Scholar 

  • Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918.

    Article  Google Scholar 

  • Crippa, M., Janssens-Maenhout, G., Dentener, F., Guizzardi, D., Sindelarova, K., Muntean, M., & Granier, C. (2016). Forty years of improvements in European air quality: Regional policy-industry interactions with global impacts. Atmospheric Chemistry and Physics, 16(6), 3825–3841.

    Article  CAS  Google Scholar 

  • Destek, M. A., & Sarkodie, S. A. (2019). Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Science of the Total Environment, 650, 2483–2489. https://doi.org/10.1016/j.scitotenv.2018.10.017.

    Article  CAS  Google Scholar 

  • Dietz, T., Rosa, E. A., & York, R. (2007). Driving the human ecological footprint. Frontiers in Ecology and the Environment, 5(1), 13–18.

    Article  Google Scholar 

  • Dogan, E., Ulucak, R., Kocak, E., & Isik, C. (2020). The use of ecological footprint in estimating the environmental Kuznets curve hypothesis for BRICST by considering cross-section dependence and heterogeneity. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.138063.

    Article  Google Scholar 

  • Douglas, I., Hodgson, R., & Lawson, N. (2002). Industry, environment and health through 200 years in Manchester. Ecological Economics, 41(2), 235–255.

    Article  Google Scholar 

  • Energy information Administration. (2018). Future world energy demand driven by trends in developing countries. Retrieved from https://www.eia.gov/todayinenergy/detail.php?id=14011.

  • Engel-Cox, J. A., Hoff, R. M., & Haymet, A. D. J. (2004). Recommendations on the use of satellite remote-sensing data for urban air quality. Journal of the Air & Waste Management Association, 54(11), 1360–1371.

    Article  Google Scholar 

  • Fang, C., Liu, H., Li, G., Sun, D., & Miao, Z. (2015). Estimating the impact of urbanization on air quality in China using spatial regression models. Sustainability, 7(11), 15570–15592.

    Article  CAS  Google Scholar 

  • Feng, L., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2017). The driving force of water footprint under the rapid urbanization process: A structural decomposition analysis for Zhangye city in China. Journal of Cleaner Production, 163, S322–S328. https://doi.org/10.1016/j.jclepro.2015.09.047.

    Article  Google Scholar 

  • Feng, R., Zheng, H. J., Zhang, A. R., Huang, C., Gao, H., & Ma, Y. C. (2019). Unveiling tropospheric ozone by the traditional atmospheric model and machine learning, and their comparison: A case study in hangzhou, China. Environmental Pollution, 252, 366–378. https://doi.org/10.1016/j.envpol.2019.05.101.

    Article  CAS  Google Scholar 

  • Ferng, J. J. (2003). Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit. Ecological Economics, 46(1), 121–141.

    Article  Google Scholar 

  • Fletcher, R., & Rammelt, C. (2017). Decoupling: A key fantasy of the post-2015 sustainable development agenda. Globalizations, 14(3), 450–467.

    Article  Google Scholar 

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.

    Article  CAS  Google Scholar 

  • Freitas, I. M. B., Marques, R. A., & e Silva, E. M. D. P., (2013). University–industry collaboration and innovation in emergent and mature industries in new industrialized countries. Research Policy, 42(2), 443–453.

  • Gfn. (2018). Global Footprint Network. WWW Document. https://data.footprintnetwork.org/?_ga=2.134472181.508123949.1609248689-1393775646.1607921298#/.

  • Ghani, E., & O’Connell, S. D. (2016). Can services be a growth escalator in low-income countries? Revue Deconomie Du Developpement, 24(2), 143–173.

    Google Scholar 

  • Giannadaki, D., Giannakis, E., Pozzer, A., & Lelieveld, J. (2018). Estimating health and economic benefits of reductions in air pollution from agriculture. Science of the Total Environment, 622, 1304–1316. https://doi.org/10.1016/j.scitotenv.2017.12.064.

    Article  CAS  Google Scholar 

  • Grimm, N. B., Foster, D., Groffman, P., Grove, J. M., Hopkinson, C. S., Nadelhoffer, K. J., & Peters, D. P. (2008). The changing landscape: Ecosystem responses to urbanization and pollution across climatic and societal gradients. Frontiers in Ecology and the Environment, 6(5), 264–272.

    Article  Google Scholar 

  • Grossman, G. M., & Krueger, A. B. (1991). Environmental impacts of a North American free trade agreement (No. w3914). National Bureau of Economic Research. https://doi.org/10.3386/w3914.

  • Grossman, G. M., & Krueger, A. B. (1995). Economic growth and the environment. The Quarterly Journal of Economics, 110(2), 353–377.

    Article  Google Scholar 

  • Guttikunda, S. K., Nishadh, K. A., & Jawahar, P. (2019). Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Climate, 27, 124–141. https://doi.org/10.1016/j.uclim.2018.11.005.

    Article  Google Scholar 

  • Haberl, H., Wackernagel, M., Krausmann, F., Erb, K. H., & Monfreda, C. (2004). Ecological footprints and human appropriation of net primary production: A comparison. Land Use Policy, 21(3), 279–288.

    Article  Google Scholar 

  • Haldar, A., & Sethi, N. (2021). Effect of institutional quality and renewable energy consumption on CO2 emissions− an empirical investigation for developing countries. Environmental Science and Pollution Research, 28(12), 15485–15503. https://doi.org/10.1007/s11356-020-11532-2.

    Article  CAS  Google Scholar 

  • Hao, Y., Peng, H., Temulun, T., Liu, L. Q., Mao, J., Lu, Z. N., & Chen, H. (2018). How harmful is air pollution to economic development? New evidence from PM2. 5 concentrations of Chinese cities. Journal of Cleaner Production, 172, 743–757. https://doi.org/10.1016/j.jclepro.2017.10.195.

    Article  CAS  Google Scholar 

  • Harishkumar, K. S., Yogesh, K. M., & Gad, I. (2020). Forecasting air pollution particulate matter (PM2. 5) using machine learning regression models. Procedia Computer Science, 171, 2057–2066. https://doi.org/10.1016/j.procs.2020.04.221.

    Article  Google Scholar 

  • Hassan, S. T., Baloch, M. A., Mahmood, N., & Zhang, J. (2019a). Linking economic growth and ecological footprint through human capital and biocapacity. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2020.102064.

    Article  Google Scholar 

  • Hassan, S. T., Xia, E., Khan, N. H., & Shah, S. M. A. (2019b). Economic growth, natural resources, and ecological footprints: Evidence from Pakistan. Environmental Science and Pollution Research, 26(3), 2929–2938.

    Article  Google Scholar 

  • Hewitt, C. N., Ashworth, K., & MacKenzie, A. R. (2020). Using green infrastructure to improve urban air quality (GI4AQ). Ambio, 49(1), 62–73.

    Article  Google Scholar 

  • Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E., Hungate, B. A., Matulich, K. L., & O’Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486(7401), 105–108.

    Article  CAS  Google Scholar 

  • Jacobson, M. Z. (2008). Short‐term effects of agriculture on air pollution and climate in California. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2008JD010689.

  • Jaysawal, D., & Saha, S. (2014). Urbanization in India: An impact assessment. International Journal of Applied Sociology, 4(2), 60–65.

    Google Scholar 

  • Kabeer, N. (2004). Globalization, labor standards, and women’s rights: Dilemmas of collective (in) action in an interdependent world. Feminist Economics, 10(1), 3–35.

    Article  Google Scholar 

  • Kabir, M., Salim, R., & Al-Mawali, N. (2017). The gravity model and trade flows: Recent developments in econometric modeling and empirical evidence. Economic Analysis and Policy, 56, 60–71. https://doi.org/10.1016/j.eap.2017.08.005.

    Article  Google Scholar 

  • Kao, C. (1999). Spurious regression and residual-based tests for co-integration in panel data. Journal of Econometrics, 90(1), 1–44.

    Article  Google Scholar 

  • Kaygusuz, K. (2011). Energy services and energy poverty for sustainable rural development. Renewable and Sustainable Energy Reviews, 15(2), 936–947.

    Article  Google Scholar 

  • Ke, H., Yang, W., Liu, X., & Fan, F. (2020). Does innovation efficiency suppress the ecological footprint? Empirical evidence from 280 Chinese Cities. International Journal of Environmental Research and Public Health, 17(18), 6826–6846.

    Article  Google Scholar 

  • Khan, M. M., Zaman, K., Irfan, D., Awan, U., Ali, G., Kyophilavong, P., & Naseem, I. (2016). Triangular relationship among energy consumption, air pollution and water resources in Pakistan. Journal of Cleaner Production, 112, 1375–1385. https://doi.org/10.1016/j.jclepro.2015.01.094.

    Article  Google Scholar 

  • Khoshnevis Yazdi, S., & Khanalizadeh, B. (2017). Air pollution, economic growth and health care expenditure. Economic Research-Ekonomska Istraživanja, 30(1), 1181–1190.

    Article  Google Scholar 

  • Kim, H. S., Chung, Y. S., & Tans, P. P. (2014). A study on carbon dioxide concentrations and carbon isotopes measured in East Asia during 1991–2011. Air Quality, Atmosphere & Health, 7(2), 173–179.

    Article  CAS  Google Scholar 

  • Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., & Engelmann, W. H. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology, 11(3), 231–252.

    Article  CAS  Google Scholar 

  • Kratena, K. (2008). From ecological footprint to ecological rent: An economic indicator for resource constraints. Ecological Economics, 64(3), 507–516.

    Article  Google Scholar 

  • Kukla-Gryz, A. (2009). Economic growth, international trade and air pollution: A decomposition analysis. Ecological Economics, 68(5), 1329–1339.

    Article  Google Scholar 

  • Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., & Pozzer, A. (2015). The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature, 525(7569), 367–371.

    Article  CAS  Google Scholar 

  • Li, G., Fang, C., Wang, S., & Sun, S. (2016). The effect of economic growth, urbanization, and industrialization on fine particulate matter (PM2. 5) concentrations in China. Environmental Science & Technology, 50(21), 11452–11459.

    Article  CAS  Google Scholar 

  • Limnios, E. A. M., Ghadouani, A., Schilizzi, S. G., & Mazzarol, T. (2009). Giving the consumer the choice: A methodology for product ecological footprint calculation. Ecological Economics, 68(10), 2525–2534.

    Article  Google Scholar 

  • Lin, D., Hanscom, L., Murthy, A., Galli, A., Evans, M., Neill, E., & Wackernagel, M. (2018). Ecological footprint accounting for countries: Updates and results of the national footprint accounts, 2012–2018. Resources, 7(3), 58. https://doi.org/10.3390/resources7030058.

    Article  Google Scholar 

  • Liu, H., Ma, W., Qian, J., Cai, J., Ye, X., Li, J., & Wang, X. (2015). Effect of urbanization on the urban meteorology and air pollution in Hangzhou. Journal of Meteorological Research, 29(6), 950–965.

    Article  Google Scholar 

  • Liu, L., & Lei, Y. (2020). Dynamic changes of the ecological footprint in the Beijing-Tianjin-Hebei region from 1996 to 2020. Ecological Indicators. https://doi.org/10.1016/j.ecolind.2020.106142.

    Article  Google Scholar 

  • Liu, X., & Bae, J. (2018). Urbanization and industrialization impact of CO2 emissions in China. Journal of Cleaner Production, 172, 178–186. https://doi.org/10.1016/j.jclepro.2017.10.156.

    Article  Google Scholar 

  • Liu, Y., Yan, B., & Zhou, Y. (2016). Urbanization, economic growth, and carbon dioxide emissions in China: A panel co-integration and causality analysis. Journal of Geographical Sciences, 26(2), 131–152.

    Article  Google Scholar 

  • Luck, M. A., Jenerette, G. D., Wu, J., & Grimm, N. B. (2001). The urban funnel model and the spatially heterogeneous ecological footprint. Ecosystems, 4(8), 782–796.

    Article  Google Scholar 

  • Luo, W., Bai, H., Jing, Q., Liu, T., & Xu, H. (2018). Urbanization-induced ecological degradation in Midwestern China: An analysis based on an improved ecological footprint model. Resources, Conservation and Recycling, 137, 113–125. https://doi.org/10.1016/j.resconrec.2018.05.015.

    Article  Google Scholar 

  • Magat, W. A. (1978). Pollution control and technological advance: A dynamic model of the firm. Journal of Environmental Economics and Management, 5(1), 1–25. https://doi.org/10.1016/0095-0696(78)90002-5.

    Article  Google Scholar 

  • McGranahan, G., & Satterthwaite, D. (2014). Urbanisation concepts and trends (vol 220). London; Iied. Retrieved from https://pubs.iied.org/sites/default/files/pdfs/migrate/10709IIED.pdf.

  • Mele, M., & Magazzino, C. (2020). A machine learning analysis of the relationship among iron and steel industries, air pollution, and economic growth in China. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.123293.

    Article  Google Scholar 

  • Năstase, G., Șerban, A., Năstase, A. F., Dragomir, G., & Brezeanu, A. I. (2018). Air quality, primary air pollutants and ambient concentrations inventory for Romania. Atmospheric Environment, 184, 292–303. https://doi.org/10.1016/j.atmosenv.2018.04.034.

    Article  CAS  Google Scholar 

  • Nathaniel, S. P. (2020). Ecological footprint, energy use, trade, and urbanization linkage in Indonesia. GeoJournal. https://doi.org/10.1007/s10708-020-10175-7.

    Article  Google Scholar 

  • Nathaniel, S., & Khan, S. A. R. (2020). The nexus between urbanization, renewable energy, trade, and ecological footprint in ASEAN countries. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.122709.

    Article  Google Scholar 

  • Odugbesan, J. A., & Rjoub, H. (2020). Relationship among economic growth, energy consumption, CO2 emission, and urbanization: Evidence from MINT Countries. SAGE Open, 10(2), 2158244020914648. https://doi.org/10.1177/2158244020914648.

    Article  Google Scholar 

  • Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, 22(2), 265–312.

    Article  Google Scholar 

  • Pesaran, M. H., Shin, Y., & Smith, R. P. (1999). Pooled mean group estimation of dynamic heterogeneous panels. Journal of the American Statistical Association, 94(446), 621–634.

    Article  Google Scholar 

  • Pesaran, M. H., & Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50–93.

    Article  Google Scholar 

  • Pieper, U. (2000). Deindustrialisation and the social and economic sustainability nexus in developing countries: Cross-country evidence on productivity and employment. The Journal of Development Studies, 36(4), 66–99.

    Article  Google Scholar 

  • Plank, B., Eisenmenger, N., & Schaffartzik, A. (2020). Do material efficiency improvements backfire? Insights from an index decomposition analysis about the link between CO2 emissions and material use for Austria. Journal of Industrial Ecology. https://doi.org/10.1111/jiec.13076.

    Article  Google Scholar 

  • Power, A. L., Tennant, R. K., Jones, R. T., Tang, Y., Du, J., Worsley, A. T., & Love, J. (2018). Monitoring impacts of urbanisation and industrialisation on air quality in the Anthropocene using urban pond sediments. Frontiers in Earth Science. https://doi.org/10.3389/feart.2018.00131.

    Article  Google Scholar 

  • Rafindadi, A. A., Muye, I. M., & Kaita, R. A. (2018). The effects of FDI and energy consumption on environmental pollution in predominantly resource-based economies of the GCC. Sustainable Energy Technologies and Assessments, 25, 126–137. https://doi.org/10.1016/j.enpol.2019.111192.

    Article  Google Scholar 

  • Rahim, N. A. (2000). General problems associated with air quality in developing countries. Air pollution and the forests of developing and rapidly industrializing regions, 4, 15. Retrieved from https://www.cabi.org/bookshop/book/9780851994819/.

  • Rashid, A., Irum, A., Malik, I. A., Ashraf, A., Rongqiong, L., Liu, G., & Yousaf, B. (2018). Ecological footprint of Rawalpindi; Pakistan’s first footprint analysis from urbanization perspective. Journal of Cleaner Production, 170, 362–368. https://doi.org/10.1016/j.jclepro.2017.09.186.

    Article  Google Scholar 

  • Rees, W. E. (1992). Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanisation, 4(2), 121–130.

    Article  Google Scholar 

  • Rehman, A., Ma, H., & Ozturk, I. (2020). Decoupling the climatic and carbon dioxide emission influence to maize crop production in Pakistan. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-020-00825-7.

    Article  Google Scholar 

  • Romieu, I., & Hernandez-Avila, M. (2012). Air pollution and health in developing countries: A review of epidemiological evidence. Air pollution and health in rapidly developing countries (2nd ed.) London, UK: Earthscan Publications Ltd, 49–67. Retrieved from https://www.routledge.com/Air-Pollution-and-Health-in-Rapidly-Developing-Countries/McGranahan-Murray/p/book/9781853839856.

  • Ross, H., & Poungsomlee, A. (1995). Environmental and social impact of urbanization in Bangkok. Counting the Costs: Economic Growth and Environmental Change in Thailand, 10(2), 131–151.

    Google Scholar 

  • Sadorsky, P. (2014). The effect of urbanization on CO2 emissions in emerging economies. Energy Economics, 41, 147–153. https://doi.org/10.1016/j.eneco.2013.11.007.

    Article  Google Scholar 

  • Sahoo, M., & Sethi, N. (2020). Impact of industrialization, urbanization, and financial development on energy consumption: Empirical evidence from India. Journal of Public Affairs. https://doi.org/10.1002/pa.2089.

    Article  Google Scholar 

  • Sahoo, M., & Sethi, N. (2021). The intermittent effects of renewable energy on ecological footprint: Evidence from developing countries. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-14600-3.

    Article  Google Scholar 

  • Sahoo, M., Saini, S., & Villanthenkodath, M. A. (2021). Determinants of material footprint in BRICS countries: An empirical analysis. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13309-7.

    Article  Google Scholar 

  • Sajjad, F., Noreen, U., & Zaman, K. (2014). Climate change and air pollution jointly creating nightmare for tourism industry. Environmental Science and Pollution Research, 21(21), 12403–12418.

    Article  CAS  Google Scholar 

  • Salami, R., & Soltanzadeh, J. (2012). Comparative analysis for science, technology and innovation policy; Lessons learned from some selected countries (Brazil, India, China, South Korea and South Africa) for other LdCs like Iran. Journal of Technology Management & Innovation, 7(1), 211–227.

    Article  Google Scholar 

  • Santibañez, D. A., Ibarra, S., Matus, P., & Seguel, R. (2013). A five-year study of particulate matter (PM2. 5) and cerebrovascular diseases. Environmental Pollution, 181, 1–6. https://doi.org/10.1016/j.envpol.2013.05.057.

    Article  CAS  Google Scholar 

  • Satterthwaite, D. (1993). The impact on health urban environments. Environment and Urbanization, 5(2), 87–111.

    Article  CAS  Google Scholar 

  • Schumpeter, J. A. (1912). Theorie der Wirtschaftlichen Entwicklung [The theory of economic development]. Dunker & Humblot.

  • Schumpeter, J. A. (1939). Business cycles, vol 1, (pp. 161–174), New York: McGraw-Hill.

  • Sebri, M. (2016). Testing the environmental Kuznets curve hypothesis for water footprint indicator: A cross-sectional study. Journal of Environmental Planning and Management, 59(11), 1933–1956.

    Article  Google Scholar 

  • Shahbaz, M., Nasreen, S., Abbas, F., & Anis, O. (2015). Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries? Energy Economics, 51, 275–287. https://doi.org/10.1016/j.eneco.2015.06.014.

    Article  Google Scholar 

  • Shahbaz, M., Loganathan, N., Muzaffar, A. T., Ahmed, K., & Jabran, M. A. (2016). How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model. Renewable and Sustainable Energy Reviews, 57, 83–93. https://doi.org/10.1016/j.rser.2015.12.096.

    Article  CAS  Google Scholar 

  • Shahzad, U., Doğan, B., Sinha, A., & Fareed, Z. (2021). Does Export product diversification help to reduce energy demand: Exploring the contextual evidences from the newly industrialized countries. Energy. https://doi.org/10.1016/j.energy.2020.118881.

    Article  Google Scholar 

  • Sharma, R., Sinha, A., & Kautish, P. (2020). Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.124867.

    Article  Google Scholar 

  • Shi, T., Hu, Y., Liu, M., Li, C., Zhang, C., & Liu, C. (2020). How do economic growth, urbanization, and industrialization affect fine particulate matter concentrations? an assessment in Liaoning Province, China. International Journal of Environmental Research and Public Health, 17(15), 5441.

    Article  Google Scholar 

  • Shrivastava, P. (1995). Environmental technologies and competitive advantage. Strategic Management Journal, 16(S1), 183–200.

    Article  Google Scholar 

  • Siddique, H. M. A., Majeed, D. M. T., & Ahmad, D. H. K. (2020). The impact of urbanization and energy consumption on CO2 emissions in South Asia. South Asian Studies, 31(2), 1–15.

    Google Scholar 

  • Smith, K. R. (1993). Fuel combustion, air pollution exposure, and health: The situation in developing countries. Annual Review of Energy and the Environment, 18(1), 529–566.

    Article  Google Scholar 

  • Sorrell, S. (2015). Reducing energy demand: A review of issues, challenges and approaches. Renewable and Sustainable Energy Reviews, 47, 74–82. https://doi.org/10.1016/j.rser.2015.03.002.

    Article  Google Scholar 

  • Stone, B., Jr. (2008). Urban sprawl and air quality in large US cities. Journal of Environmental Management, 86(4), 688–698.

    Article  CAS  Google Scholar 

  • Tunç, G. I., Türüt-Aşık, S., & Akbostancı, E. (2009). A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy, 37(11), 4689–4699.

    Article  Google Scholar 

  • Uddin, G. A., Alam, K., & Gow, J. (2016). Does ecological footprint impede economic growth? An empirical analysis based on the environmental Kuznets curve hypothesis. Australian Economic Papers, 55(3), 301–316.

    Article  Google Scholar 

  • Udemba, E. N. (2020). A sustainable study of economic growth and development amidst ecological footprint: New insight from Nigerian Perspective. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139270.

    Article  Google Scholar 

  • Ulucak, R., & Khan, S. U. D. (2020). Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2019.101996.

    Article  Google Scholar 

  • Ulucak, Z. Ş., İlkay, S. Ç., Özcan, B., & Gedikli, A. (2020). Financial globalization and environmental degradation nexus: Evidence from emerging economies. Resources Policy, 67.

  • Usman, M., Kousar, R., Yaseen, M. R., & Makhdum, M. S. A. (2020a). An empirical nexus between economic growth, energy utilization, trade policy, and ecological footprint: A continent-wise comparison in upper-middle-income countries. Environmental Science and Pollution Research, 27(31), 38995–39018.

    Article  Google Scholar 

  • Usman, O., Iortile, I. B., & Ike, G. N. (2020b). Enhancing sustainable electricity consumption in a large ecological reserve–based country: The role of democracy, ecological footprint, economic growth, and globalisation in Brazil. Environmental Science and Pollution Research, 27(12), 13370–13383.

    Article  Google Scholar 

  • Wackernagel, M., & Rees, W. E. (1997). Perceptual and structural barriers to investing in natural capital: Economics from an ecological footprint perspective. Ecological Economics, 20(1), 3–24.

    Article  Google Scholar 

  • Wackernagel, M., & Rees, W. (1998). Our ecological footprint: Reducing human impact on the earth (Vol. 9). New society publishers.

  • Wang, L., Zhang, F., Pilot, E., Yu, J., Nie, C., Holdaway, J., & Krafft, T. (2018a). Taking action on air pollution control in the Beijing-Tianjin-Hebei (BTH) region: Progress, challenges and opportunities. International Journal of Environmental Research and Public Health, 15(2), 306–315.

    Article  Google Scholar 

  • Wang, S., Li, G., & Fang, C. (2018b). Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renewable and Sustainable Energy Reviews, 81, 2144–2159. https://doi.org/10.1016/j.rser.2017.06.025.

    Article  Google Scholar 

  • Wang, S., Zeng, J., Huang, Y., Shi, C., & Zhan, P. (2018c). The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis. Applied Energy, 228, 1693–1706. https://doi.org/10.1016/j.apenergy.2018.06.155.

    Article  Google Scholar 

  • Wang, S., Gao, S., Li, S., & Feng, K. (2020a). Strategizing the relation between urbanization and air pollution: Empirical evidence from global countries. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118615.

    Article  Google Scholar 

  • Wang, S., He, Y., & Song, M. (2020b). Global value chains, technological progress, and environmental pollution: Inequality towards developing countries. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2020.110999.

    Article  Google Scholar 

  • Wang, Z., Li, D., Cheng, H., & Luo, T. (2020c). Multifaceted influences of urbanization on sense of place in the rural–urban fringes of China: Growing, dissolving, and transitioning. Journal of Urban Planning and Development, 146(1), 04019026.

    Article  Google Scholar 

  • Watts, N., Adger, W. N., Agnolucci, P., Blackstock, J., Byass, P., Cai, W., & Costello, A. (2015). Health and climate change: Policy responses to protect public health. The Lancet, 386(10006), 1861–1914.

    Article  Google Scholar 

  • Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and Statistics, 69(6), 709–748.

    Article  Google Scholar 

  • WHO. (2018). Household air pollution and health. Retrieved from https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health.

  • Yiu, D. W., Lau, C., & Bruton, G. D. (2007). International venturing by emerging economy firms: The effects of firm capabilities, home country networks, and corporate entrepreneurship. Journal of International Business Studies, 38(4), 519–540.

    Article  Google Scholar 

  • Yu, Y., Jin, Z. X., & Jia, L. (2020). Low-carbon development path research on China’s power industry based on synergistic emission reduction between CO2 and air pollutants. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.123097.

    Article  Google Scholar 

  • Zafar, M. W., Zaidi, S. A. H., Khan, N. R., Mirza, F. M., Hou, F., & Kirmani, S. A. A. (2019). The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States. Resources Policy. https://doi.org/10.1016/j.resourpol.2019.101428.

    Article  Google Scholar 

  • Zaman, K., Abdullah, I., & Ali, M. (2017). Decomposing the linkages between energy consumption, air pollution, climate change, and natural resource depletion in Pakistan. Environmental Progress & Sustainable Energy, 36(2), 638–648.

    Article  CAS  Google Scholar 

  • Zhang, G., Zhang, N., & Liao, W. (2018). How do population and land urbanization affect CO2 emissions under gravity center change? A spatial econometric analysis. Journal of Cleaner Production, 202, 510–523. https://doi.org/10.1016/j.jclepro.2018.08.146.

    Article  Google Scholar 

  • Zhang, L., Dzakpasu, M., Chen, R., & Wang, X. C. (2017a). Validity and utility of ecological footprint accounting: A state-of-the-art review. Sustainable Cities and Society, 32, 411–416. https://doi.org/10.1016/j.scs.2017.04.016.

    Article  Google Scholar 

  • Zhang, Y. J., Peng, Y. L., Ma, C. Q., & Shen, B. (2017b). Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy, 100, 18–28. https://doi.org/10.1016/j.enpol.2016.10.005.

    Article  CAS  Google Scholar 

  • Zhao, C., Chen, B., Hayat, T., Alsaedi, A., & Ahmad, B. (2014). Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecological Indicators, 47, 43–49. https://doi.org/10.1016/j.ecolind.2014.04.048.

    Article  Google Scholar 

  • Zhao, H., Yin, B., & Sun, C. (2006). Transaction efficiency, industrialization and urbanization: A model and empirical evidence to understand China’s economic development. CHINA ECONOMIC QUARTERLY-BEIJING. https://doi.org/10.1177/0956247813490908.

  • Zhu, W., Wang, M., & Zhang, B. (2019). The effects of urbanization on PM2. 5 concentrations in China’s Yangtze River Economic Belt: New evidence from spatial econometric analysis. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.118065.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would be grateful to the editors, associate editors, and anonymous referees of the journal for their extremely useful suggestions for the improvement of this paper. The usual disclaimers apply.

Funding

There is no funding available for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malayaranjan Sahoo.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Appendix Tables 13,14,15

Table 13 Definition of indicators used in this study
Table 14 Correlation Matrix (Model 1)
Table 15 Correlation Matrix (Model 2)

.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, M., Sethi, N. The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries. Environ Dev Sustain 24, 4244–4277 (2022). https://doi.org/10.1007/s10668-021-01614-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01614-7

Keywords

Navigation