Skip to main content

Advertisement

Log in

Effects of carbon tax on environment under duopoly

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Environment protection and green development is of great importance. Therefore, this paper attempts to propose an environmentally friendly and sustainable development model that depends on environmental economics and game theory. This paper employs an analytical approach to show that the effects of carbon tax on environment regulation in case of the duopoly market structure. Some interesting conclusions are obtained. Firstly, factors affecting carbon tax, such as the importance of environment to the government, are captured. Secondly, this paper shows that low efficiency firm has more stimulation to reduce product substitutability and more motivation to practice product efficiency improving innovations. Thirdly, optimal carbon tax is compared between tax on energy input and unit carbon tax. The results show that unit tax is lower than energy input tax under optimal condition. More importantly, the numeric results of the paper clearly demonstrate that those countries committed to environment prefer input tax since it is more efficient in reducing energy consumption, while a profit maximization approach leads to the unit carbon tax. The findings of this paper can be helpful to those who are responsible for the environment and sustainable progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

This is a pure theoretical study and there is availability no data and materials.

Abbreviations

p i :

Price of firm i, i ∈ {1, 2}

q i :

Output of firm i

θ i :

Marginal production of firm i

e i :

Energy inputs of firm i

π i :

Profits of firm i

:

Price of energy

γ :

Product substitutability

η :

Marginal production gap

τ 1 :

Tax ratio based on energy input

τ 2 :

Unit tax ratio

κ :

Weight of energy consumption

Г :

Total carbon tax

PS :

Producer surplus

CS :

Consumer surplus

GSW :

Generalized social welfare

References

  • Andersson, F. N. G. (2018). International trade and carbon emissions: The role of Chinese institutional and policy reforms. Journal of Environmental Management, 205, 29–39.

    Article  Google Scholar 

  • Beck, M., Rivers, N., & Yonezawa, H. (2016). A rural myth? Sources and implications of the perceived unfairness of carbon taxes in rural communities. Ecological Economics, 124, 124–134.

    Article  Google Scholar 

  • Cheng, L., Martínez, M. G., & Anderson, C. L. (2016). Long term planning and hedging for a lignocellulosic biorefinery in a carbon constrained world. Energy Conversion and Management, 126, 463–472.

    Article  Google Scholar 

  • Chen, Y. H., Wang, C., & Nie, P. Y. (2020a). Emission regulation of conventional energy-intensive industries. Environment, Development and Sustainability, 22, 3723–3737.

    Article  Google Scholar 

  • Chen, Y. H., Wang, C., Nie, P. Y., & Chen, Z. R. (2020b). A clean innovation comparison between carbon tax and cap-and-trade system. Energy Strategy Reviews, 29, 100483.

    Article  Google Scholar 

  • Chen, Y. H., Chen, M. X., & Mishra, A. K. (2020c). Subsidies under uncertainty: Modeling of input-and output-oriented policies. Economic Modelling, 2020(85), 39–56.

    Article  CAS  Google Scholar 

  • Chen, Y. H., Wen, X. W., Wang, B., & Nie, P. Y. (2017). Agricultural pollution and regulation: How to subsidize agriculture? Journal of Cleaner Production, 164, 258–264.

    Article  Google Scholar 

  • Chow, G. C. (2011). Economic analysis and policies for environment problems. Pacific Economic Review, 16(3), 339–348.

    Article  Google Scholar 

  • Cuevas, S., & Haines, A. (2016). Health benefits of a carbon tax. Lancet, 387, 7–9.

    Article  Google Scholar 

  • De Sá, S. A., & Daubanes, J. (2016). Limit pricing and the (in) effectiveness of the carbon tax. Journal of Public Economics, 139, 28–39.

    Article  Google Scholar 

  • Feichtinger, G., Lambertini, L., Leitmann, G., & Wrzaczek, S. (2016). R&D for green technologies in a dynamic oligopoly: Schumpeter, arrow and inverted-U’s. European Journal of Operational Research, 249(3), 1131–1138.

    Article  Google Scholar 

  • Frey, M. (2016). Assessing the impact of a carbon tax in Ukraine. Climate Policy, 17(3), 378–396.

    Article  Google Scholar 

  • Gevrek, Z. E., & Uyduranoglu, A. (2015). Public preferences for carbon tax attributes. Ecological Economics, 118, 186–197.

    Article  Google Scholar 

  • Häckner, J., & Herzing, M. (2016). Welfare effects of taxation in oligopolistic markets. Journal of Economic Theory, 163, 141–166.

    Article  Google Scholar 

  • Julien, L. A. (2017). On noncooperative oligopoly equilibrium in the multiple leader–follower game. European Journal of Operational Research, 256(2), 650–662.

    Article  Google Scholar 

  • Kuo, T. C., Hong, I. H., & Lin, S. C. (2016). Do carbon taxes work? Analysis of government policies and enterprise strategies in equilibrium. Journal of Cleaner Production, 139, 337–346.

    Article  Google Scholar 

  • Lau, K. Y., Muhamad, N. A., Arief, Y. Z., Tan, C. W., & Yatim, A. H. M. (2016). Grid-connected photovoltaic systems for Malaysian residential sector: Effects of component costs, feed-in tariffs, and carbon taxes. Energy, 102, 65–82.

    Article  Google Scholar 

  • Nie, P. Y., & Wang, C. (2019). An analysis of cost-reduction innovation under capacity constrained inputs. Applied Economics, 51(6), 564–576.

    Article  Google Scholar 

  • Pereira, A. M., Pereira, R. M., & Rodrigues, P. G. (2016). A new carbon tax in Portugal: A missed opportunity to achieve the triple dividend? Energy Policy, 93, 110–118.

    Article  Google Scholar 

  • Vera, S., & Sauma, E. (2015). Does a carbon tax make sense in countries with still a high potential for energy efficiency? comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chilean case. Energy, 88, 478–488.

    Article  Google Scholar 

  • Yang, D. X., & Nie, P. Y. (2016). Influence of optimal government subsidies for renewable energy enterprises. IET Renewable Power Generation, 10(9), 1413–1421.

    Article  Google Scholar 

  • Zhou, D. Q., Ana, Y. F., Zha, D. L., Wua, F., & Wang, Q. W. (2019). Would an increasing block carbon tax be better? A comparative study within the Stackelberg game framework. Journal of Environmental Management, 235, 328–341.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guangdong Social Science (GD2018CYJ01; GD18JRZ05), the Foundation for Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme, GDUPS (2019), the Natural Science Foundation of Guangdong (2018A030310669); the National Natural Science Foundation of P.R. China (71771057), Humanities and social sciences fund of the Ministry of Education (18YJC790156), Guangdong Social Science Foundation (GD17XYJ23), Innovative Foundation (Humanities and Social Sciences) for Higher Education of Guangdong Province (2017WQNCX053). And sincerely thanks to the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Contributions

You-hua Chen has made substantial contributions to the conception and design of the work, and substantially revised the manuscript. Pu-yan Nie has made substantial contribution to the conception and design of the work, drafted the manuscript. Chan Wang read and approved the final manuscript.

Corresponding author

Correspondence to Chan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Proposition 1

Equation (16) is denoted as

$$\begin{gathered} f = \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right. \hfill \\ \;\;\;\left. { + \frac{4}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{6}{(2 + \gamma )}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\frac{A}{(2 + \gamma )} - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] = 0. \hfill \\ \end{gathered}$$
(A1)

By the implicit function theorem, we have

$$\frac{{\partial \tau_{1}^{*} }}{\partial \kappa } = - \frac{{\frac{\partial f}{{\partial \kappa }}}}{{\frac{\partial f}{{\partial \tau_{1}^{*} }}}} > 0.$$

The above inequality holds because \(\frac{\partial f}{{\partial \kappa }} > 0\) and concavity of the GSW function implies \(\frac{\partial f}{{\partial \tau_{1}^{*} }} < 0\). Thus, optimal carbon tax increases with the degree to attach importance of the government to the environment. By Eqs. (10, 12,13), we declare that the more importance attached to the environment is, the lower energy is consumed and fewer profits for firm are.

Here we address the effects of market power on optimal carbon tax ratio. Given \(\theta_{{1}}\), by function (A1) and \(\theta_{{2}} { = }\theta_{{1}} + \eta\), we achieve

$$\begin{gathered} \frac{\partial f}{{\partial \eta }} = \frac{\partial f}{{\partial \theta_{2} }} = \frac{2}{{\theta_{2}^{2} }}\left[ { - \frac{4}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}(\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}) + \frac{3}{(2 + \gamma )}\frac{A}{(2 + \gamma )}} \right. \hfill \\ \;\;\;\;\;\; + \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{2\gamma }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right) \hfill \\ \;\;\;\;\;\; - \frac{4\kappa }{{(4 - \gamma^{2} )}}\frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left( {\frac{\gamma }{{\theta_{1} }} - \frac{2}{{\theta_{2}^{{}} }}} \right) \hfill \\ \;\;\;\;\;\;\left. { - \frac{\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\frac{A}{(2 + \gamma )} + \frac{2\kappa }{{(4 - \gamma^{2} )}}\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)\left( {\frac{\gamma }{{\theta_{1} }} - \frac{2}{{\theta_{2}^{{}} }}} \right)} \right]. \hfill \\ \end{gathered}$$
(A2)

Moreover, \(1 \le \theta_{1} \le \theta_{2} \le 2\) implies \(\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }} > \frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}\). Function (A1) and \(A > > \alpha\) jointly indicate.

\(\begin{gathered} \frac{4}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} + \frac{2\kappa }{{(4 - \gamma^{2} )}}\frac{A}{(2 + \gamma )}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{6}{(2 + \gamma )}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\frac{A}{(2 + \gamma )} \hfill \\ = \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) + \frac{8\kappa }{{(4 - \gamma^{2} )}}\frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} , \hfill \\ \end{gathered}\)and

$$\begin{gathered} \left[ { - \frac{2}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}(\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}) + \frac{3}{(2 + \gamma )}\frac{A}{(2 + \gamma )} - \frac{\kappa }{{(4 - \gamma^{2} )}}(\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }})\frac{A}{(2 + \gamma )}} \right]\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) \hfill \\ = - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{2}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{4\kappa }{{(4 - \gamma^{2} )}}\frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} . \hfill \\ \end{gathered}$$

Thus,

$$\begin{gathered} - \frac{2}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) + \frac{3}{{(2{ + }\gamma )}}\frac{A}{(2 + \gamma )} - \frac{\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\frac{A}{(2 + \gamma )} \hfill \\ { = } - \frac{{2(\alpha + \tau_{1} )}}{{(4 - \gamma^{2} )^{2} (\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }})}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{{4\kappa (\alpha + \tau_{1} )}}{{(4 - \gamma^{2} )^{2} (\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }})}}\left( {\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} . \hfill \\ \end{gathered}$$

Moreover,

$$\begin{gathered} \frac{\partial f}{{\partial \eta }} = \frac{2}{{\theta_{2}^{2} }}\left[ { - \frac{4}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) + \frac{3}{{(2{ + }\gamma )}}\frac{A}{(2 + \gamma )}{ + }\frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right. \hfill \\ \;\;\;\;\; - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{2\gamma }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right) - \frac{4\kappa }{{(4 - \gamma^{2} )}}\frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left( {\frac{\gamma }{{\theta_{1} }} - \frac{2}{{\theta_{2}^{{}} }}} \right) \hfill \\ \left. {\;\;\;\;\; - \frac{\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\frac{A}{(2 + \gamma )} - \frac{2\kappa }{{(4 - \gamma^{2} )}}\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)\left( {\frac{2}{{\theta_{2}^{{}} }} - \frac{\gamma }{{\theta_{1} }}} \right)} \right] \hfill \\ \end{gathered}$$
$$\begin{gathered} = \frac{2}{{\theta_{2}^{2} }}\left[ { - \frac{2}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{2(\alpha + \tau_{1} )}}{{(4 - \gamma^{2} )^{2} (\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }})}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{{4\kappa (\alpha + \tau_{1} )}}{{(4 - \gamma^{2} )^{2} (\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }})}}\left( {\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} } \right. \hfill \\ { + }\frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{2\gamma }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right) + \frac{4\kappa }{{(4 - \gamma^{2} )}}\frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left( {\frac{2}{{\theta_{2}^{{}} }} - \frac{\gamma }{{\theta_{1} }}} \right) \hfill \\ \left. { - \frac{2\kappa }{{(4 - \gamma^{2} )}}\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)\left( {\frac{2}{{\theta_{2}^{{}} }} - \frac{\gamma }{{\theta_{1} }}} \right)} \right] \hfill \\ = \frac{2}{{\theta_{2}^{2} }}\left\{ { - \frac{2}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) + \frac{{2(\alpha + \tau_{1} )}}{{(4 - \gamma^{2} )^{2} (\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }})}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right. \hfill \\ - \frac{{2(\alpha + \tau_{1} )}}{{(4 - \gamma^{2} )^{2} (\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }})}}\left[ {2\kappa \left( {\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} - \left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right] - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{2\gamma }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right) \hfill \\ - \left. {\frac{2\kappa }{{(4 - \gamma^{2} )^{2} }}(\frac{2}{{\theta_{2}^{{}} }} - \frac{\gamma }{{\theta_{1} }})\left[ {A(2 - \gamma )(\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}) - 4(\alpha + \tau_{1} )(\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }})} \right]} \right\} < 0. \hfill \\ \end{gathered}$$

The last inequality holds because \(A\left( {2 - \gamma } \right)\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) > 4\left( {\alpha + \tau_{1} } \right)\left( {\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}} \right)\) and \(2\kappa \left( {\frac{1}{{\theta_{1}^{2} }} + \frac{1}{{\theta_{2}^{2} }} - \frac{\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} > \left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{2} }}} \right)\). Therefore, based on functions (A1) and equation (A2), we have

$$\frac{{\partial \tau_{1}^{*} }}{\partial \eta } = - \frac{{\frac{\partial f}{{\partial \eta }}}}{{\frac{\partial f}{{\partial \tau_{1}^{*} }}}} < 0.$$

Similarly, we have the relationship \(\frac{{\partial \tau_{1}^{*} }}{{\partial \theta_{1} }} < 0.\) Therefore, product efficiency reduces the optimal carbon tax ratio.

By virtue of function (A1), we obtain

$$\begin{gathered} f_{1} = \frac{2\kappa }{{(2 - \gamma )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {A\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{\alpha + \tau_{1} }}{(2 - \gamma )}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] \hfill \\ \;\;\;\; + 4\left( {\alpha + \tau_{1} } \right)\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - 6A\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) - \frac{{\alpha + \tau_{1} }}{(2 - \gamma )}\frac{4}{(2 - \gamma )}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) = 0. \hfill \\ \end{gathered}$$
(A3)

From function (A3), we have \(\frac{{\partial f_{1} }}{{\partial \tau_{1}^{*} }} < 0\) and

\(\begin{gathered} \frac{{\partial f_{1} }}{\partial \gamma } = \frac{1}{2 - \gamma }\left[ {\frac{2A\kappa }{{(2 - \gamma )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{4\kappa (\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} - \frac{{8(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right] \hfill \\ \;\;\;\;\;\; - \frac{4A\kappa }{{(2 - \gamma )\theta_{1} \theta_{2} }}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) + \frac{{8\kappa (\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} \theta_{1} \theta_{2} }}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right) + \frac{{4(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right) \hfill \\ \end{gathered}\)\(\begin{gathered} = \frac{1}{2 - \gamma }\left[ {2\left( {3 - \frac{2\kappa }{{\theta_{1} \theta_{2} }}} \right)A\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) - \frac{{4(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right] \hfill \\ + \frac{{2\kappa (\alpha + \tau_{1} )}}{{(2 - \gamma )^{3} }}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left( {\frac{8 - 2\gamma }{{\theta_{1} \theta_{2} }} - \frac{2}{{\theta_{1}^{2} }} - \frac{2}{{\theta_{2}^{2} }}} \right) - \frac{{4(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{4}{{\theta_{1} \theta_{2} }} - \frac{\gamma }{{\theta_{1}^{2} }} - \frac{\gamma }{{\theta_{2}^{2} }}} \right) \hfill \\ < \frac{1}{2 - \gamma }\left[ {2\left( {3 - \frac{2\kappa }{{\theta_{1} \theta_{2} }}} \right)A\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) - \frac{{4(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right] \hfill \\ + \frac{{2\kappa (\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\frac{2}{{\theta_{1} \theta_{2} }} - \frac{{4(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{4}{{\theta_{1} \theta_{2} }} - \frac{\gamma }{{\theta_{1}^{2} }} - \frac{\gamma }{{\theta_{2}^{2} }}} \right) \hfill \\ \end{gathered}\)\(\begin{gathered} = \frac{1}{2 - \gamma }\left[ {2\left( {3 - \frac{\kappa }{{\theta_{1} \theta_{2} }}} \right)A\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) - \frac{{4(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right] \hfill \\ - \frac{2\kappa }{{\theta_{1} \theta_{2} (2 - \gamma )^{2} }}\left[ {A\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\left( {2 - \gamma } \right) - 2\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)(\alpha + \tau_{1} )} \right] - \frac{{4(\alpha + \tau_{1} )}}{{(2 - \gamma )^{2} }}\left( {\frac{4}{{\theta_{1} \theta_{2} }} - \frac{\gamma }{{\theta_{1}^{2} }} - \frac{\gamma }{{\theta_{2}^{2} }}} \right) < 0. \hfill \\ \end{gathered}\) The second equality above comes from function (A3) under \(3 < \frac{\kappa }{{\theta_{1} \theta_{2} }}\) and \(A\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\left( {2 - \gamma } \right) > 2\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left( {\alpha + \tau_{1} } \right)\). Therefore, we get \(\frac{{\partial \tau_{1}^{*} }}{\partial \gamma } = - \frac{{\frac{\partial f}{{\partial \gamma }}}}{{\frac{\partial f}{{\partial \tau_{1}^{*} }}}} < 0.\)

Thus, product substitutability reduces the optimal carbon tax ratio. Conclusions are achieved and the proof is complete.

1.2 Proof of Proposition 2

By Eq. (19), we have

$$\begin{gathered} \frac{{\partial q_{1}^{{*,2}} }}{\partial \gamma }{ = }\frac{{\partial \left( {\frac{{A - \tau_{2} }}{2 + \gamma }} \right)}}{\partial \gamma } - \frac{2\gamma \alpha }{{(4 - \gamma^{2} )^{2} }}\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) + \frac{\alpha }{{(4 - \gamma^{2} )}}\frac{1}{{\theta_{2} }}{ = }\frac{{\partial \left( {\frac{{A - \tau_{2} }}{2 + \gamma }} \right)}}{\partial \gamma } + \frac{\alpha }{{(4 - \gamma^{2} )^{2} }}\left( {\frac{{4 + \gamma^{2} }}{{\theta_{2} }} - \frac{4\gamma }{{\theta_{1} }}} \right), \hfill \\ \frac{{\partial q_{2}^{{*,2}} }}{\partial \gamma }{ = }\frac{{\partial \left( {\frac{{A - \tau_{2} }}{2 + \gamma }} \right)}}{\partial \gamma } - \frac{2\gamma \alpha }{{(4 - \gamma^{2} )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right) + \frac{\alpha }{{(4 - \gamma^{2} )}}\frac{1}{{\theta_{1} }}{ = }\frac{{\partial \left( {\frac{{A - \tau_{2} }}{2 + \gamma }} \right)}}{\partial \gamma } + \frac{\alpha }{{(4 - \gamma^{2} )^{2} }}\left( {\frac{{4 + \gamma^{2} }}{{\theta_{1} }} - \frac{4\gamma }{{\theta_{2} }}} \right). \hfill \\ \end{gathered}$$

Obviously, \(\frac{{\partial q_{2}^{{*,2}} }}{\partial \gamma } - \frac{{\partial q_{1}^{{*,2}} }}{\partial \gamma } = \frac{{2(\theta_{2} - \theta_{1} )}}{{(2 - \gamma )^{2} }} > 0\) because \(1 \le \theta_{1} \le \theta_{2} \le 2\). Therefore, firm with lower efficiency has more intention to reduce product substitutability (or reduce \(\gamma\)) than others.

Here we address effects of market power on firm’s innovation. By Eq. (19), we have

$$\frac{{\partial q_{1}^{{*,2}} }}{{\partial \theta_{1} }}{ = }\frac{ - 1}{{(2 + \gamma )}}\frac{{\partial \tau_{2} }}{{\partial \theta_{1} }} + \frac{\alpha }{{(4 - \gamma^{2} )}}\frac{2}{{\theta_{1}^{2} }},\frac{{\partial q_{2}^{{*,2}} }}{{\partial \theta_{2} }}{ = }\frac{ - 1}{{(2 + \gamma )}}\frac{{\partial \tau_{2} }}{{\partial \theta_{2} }} + \frac{\alpha }{{(4 - \gamma^{2} )}}\frac{2}{{\theta_{2}^{2} }}.$$

Combining the formulations of \(\frac{{\partial \tau_{2} }}{{\partial \theta_{1} }}\) and \(\frac{{\partial \tau_{2} }}{{\partial \theta_{2} }}\), we have \(\frac{{\partial q_{1}^{{*,2}} }}{{\partial \theta_{1} }} - \frac{{\partial q_{2}^{{*,2}} }}{{\partial \theta_{2} }} = \frac{{2\alpha (\theta_{2}^{2} - \theta_{1}^{2} )}}{{(4 - \gamma^{2} )\theta_{1}^{2} \theta_{2}^{2} }} > 0.\) Conclusions are achieved and the proof is complete. □

1.3 Proof of Proposition 3

From Eq. (16), we have.

\(\begin{gathered} \left. f \right|_{{\tau_{1} = \tau_{1}^{*} }} = \frac{4}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{6}{{(2{ + }\gamma )}}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\frac{A}{(2 + \gamma )} \hfill \\ \;\;\;\;\;\;\;\;\;\; + \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] = 0. \hfill \\ \end{gathered}\)Here we consider the sign of the following formulation.

\(\begin{gathered} \left. f \right|_{{\tau_{1} = \theta_{1} \tau_{2}^{*} }} = \frac{4}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{6}{{(2{ + }\gamma )}}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\frac{A}{(2 + \gamma )} \hfill \\ \;\;\;\;\;\;\;\;\;\;\; + \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] \hfill \\ \end{gathered}\)Taking Eq. (21) into account, we achieve the following equation.

\(\frac{6\alpha }{{(2 + \gamma )^{2} }}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) - \frac{{12(A - \tau_{2}^{*} )}}{{(2 + \gamma )^{2} }} + \frac{\kappa }{(2 + \gamma )}\left[ {\frac{{A - \tau_{2}^{*} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{\alpha }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] = 0.\)Therefore, we immediately get the following formulation.

\(\begin{gathered} \left. f \right|_{{\tau_{1} = \theta_{1} \tau_{2}^{*} }} = \frac{4}{(2 + \gamma )}\frac{{\alpha + \theta_{1} \tau_{2}^{*} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{{\alpha + \theta_{1} \tau_{2}^{*} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{6A}{{(2{ + }\gamma )^{2} }}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) \hfill \\ \;\;\;\;\;\;\;\;\;\;\; + \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{\alpha + \theta_{1} \tau_{2}^{*} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] \hfill \\ \end{gathered}\)\(\begin{gathered} \;\;\;\;\;\;\;\;\;\;\; = \frac{4}{(2 + \gamma )}\frac{{\alpha + \theta_{1} \tau_{2}^{*} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{{\alpha + \theta_{1} \tau_{2}^{*} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} \frac{{\theta_{1} \tau_{2}^{*} }}{{(4 - \gamma^{2} )}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\; + \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{\alpha }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] - \frac{6A}{{(2{ + }\gamma )^{2} }}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) \hfill \\ \end{gathered}\)\(\begin{gathered} \;\;\;\;\;\;\;\;\;\;\; = \frac{4}{(2 + \gamma )}\frac{{\alpha + \theta_{1} \tau_{2}^{*} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{{\alpha + \theta_{1} \tau_{2}^{*} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)^{2} \frac{{\theta_{1} \tau_{2}^{*} }}{{(4 - \gamma^{2} )}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\; + \frac{2}{(2 - \gamma )}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {\frac{{12(A - \tau_{2}^{*} )}}{{(2 + \gamma )^{2} }} - \frac{6\alpha }{{(2 + \gamma )^{2} }}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) + \frac{{\kappa \theta_{1} \tau_{2}^{*} }}{{(2 + \gamma )^{2} }}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)} \right] - \frac{6A}{{(2{ + }\gamma )^{2} }}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) \hfill \\ \;\;\;\;\;\;\;\;\;\;\; = \frac{6A}{{(2{ + }\gamma )^{2} }}\left[ {\frac{4}{(2 - \gamma )}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right) - \left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)} \right] + \frac{{2\kappa \theta_{1} \tau_{2}^{*} (\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }})}}{{(2 + \gamma )^{2} (2 - \gamma )^{2} }}\left[ {(2 - \gamma )\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] \hfill \\ \;\;\;\;\;\;\;\;\;\;\;{ + }\frac{4\alpha }{{(2 + \gamma )^{2} }}\left[ {\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{3}{(2 - \gamma )}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right) - \frac{1}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right] \hfill \\ \;\;\;\;\;\;\;\;\;\;\; + \frac{{4\theta_{1} \tau_{2}^{*} }}{{(2 + \gamma )^{2} }}\left[ {\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{1}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)} \right] - \frac{2}{(2 - \gamma )}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\frac{{12\tau_{2}^{*} }}{{(2 + \gamma )^{2} }} \ge {0}{\text{.}} \hfill \\ \end{gathered}\)The above inequality holds because

\((2 - \gamma )\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right) = \left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right)\left( {1 - \frac{1}{{\theta_{1} }}} \right) + \left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {1 - \frac{1}{{\theta_{2} }}} \right) > 0\),

$$\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{1}{{(2 - \gamma )^{2} }}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) > 0,$$

\(\begin{gathered} \frac{4}{{\left( {2 - \gamma } \right)}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} + \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right) - \left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) = \frac{4}{{\left( {2 - \gamma } \right)}}\left( {\frac{2 - \gamma }{{\theta_{1}^{2} }} + \frac{2 - \gamma }{{\theta_{2}^{2} }} + \frac{\gamma }{{\theta_{1}^{2} }} + \frac{\gamma }{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}\frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right) - \left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right) \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; > \frac{{2}}{(2 - \gamma )}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right), \hfill \\ \end{gathered}\)and \(A - 2\tau_{2}^{*} - \alpha \left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) > 0.\) By the concavity of social welfare, we obtain \(\frac{{\tau_{1}^{*} }}{{\theta_{1} }} \ge \tau_{2}^{*}\).

Moreover, by the similar way, we have

\(\begin{gathered} \left. f \right|_{{\tau_{1} = \theta_{2} \tau_{2}^{*} }} = \frac{4}{(2 + \gamma )}\frac{{\alpha + \tau_{1} }}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right)^{2} - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\frac{4}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{2} }} - \frac{\gamma }{{\theta_{1} }}} \right)\left( {\frac{2}{{\theta_{1} }} - \frac{\gamma }{{\theta_{2} }}} \right) - \frac{6}{{(2{ + }\gamma )}}\left( {\frac{1}{{\theta_{2} }} + \frac{1}{{\theta_{1} }}} \right)\frac{A}{(2 + \gamma )} \hfill \\ \;\;\;\;\;\;\;\;\;\;\; + \frac{2\kappa }{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)\left[ {\frac{A}{(2 + \gamma )}\left( {\frac{1}{{\theta_{1} }} + \frac{1}{{\theta_{2} }}} \right) - \frac{{\alpha + \tau_{1} }}{{(4 - \gamma^{2} )}}\left( {\frac{2}{{\theta_{1}^{2} }} + \frac{2}{{\theta_{2}^{2} }} - \frac{2\gamma }{{\theta_{1} \theta_{2} }}} \right)} \right] \ge {0}{\text{.}} \hfill \\ \end{gathered}\)Therefore, \(\tau_{2}^{*} \le \frac{{\tau_{1}^{*} }}{{\theta_{2} }}\). In summary, we achieve \(\frac{{\tau_{1}^{*} }}{{\theta_{1} }} \ge \frac{{\tau_{1}^{*} }}{{\theta_{2} }} \ge \tau_{2}^{*}\).

Conclusions are achieved and the proof is complete. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yh., Nie, Py. & Wang, C. Effects of carbon tax on environment under duopoly. Environ Dev Sustain 23, 13490–13507 (2021). https://doi.org/10.1007/s10668-020-01222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-01222-x

Keyword

Navigation