Skip to main content

Advertisement

Log in

Reduction of global warming potential vis-à-vis greenhouse gases through traditional agroforestry systems in Rajasthan, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Tree-based systems in arid region of India are an integral part of livelihood and environment security. Traditionally, the maintenance of scattered trees on farm to reap several tangible and intangible benefits is a way of life. Presently, these systems are often known as low-hanging fruit and become a key weapon to fight climate change evil by offsetting greenhouse gas (GHG) emission through carbon sequestration. Therefore, to quantify the offsetting potential of GHG emission and area occupied by these tree-based systems in Rajasthan was undertaken. The study was carried out into two major aspects: estimation of agroforestry area using satellite remote sensing data, and to estimate the carbon sequestration potential of existing agroforestry by using dynamic CO2FIXv3.1 model for a simulation period of 30-years in five districts (20% sampling), namely, Bikaner, Dausa, Jhunjhunu, Pali and Sikar from Rajasthan, India. The estimated area under agroforestry in Rajasthan was 1.49 million ha. The findings revealed that the major tree species existing on farmer’s field were Prosopis cineraria, Tecomella undulata, Capparis decidua, Acacia tortilis, Prosopis juliflora, Azadirachta indica and Ziziphus mauritiana with an observed number of trees in selected districts varied from 1.40 to 14.90 ha−1(with average tree density of 9.71 ha−1). The total biomass (tree + Crop) varied from 2.22 to 19.19 Mg ha−1, whereas the total biomass carbon ranged from 1.00 to 8.64 Mg C ha−1. The soil organic carbon ranged from 4.51 to 16.50 Mg C ha−1. The average estimated carbon sequestration and mitigation potential of the agroforestry were 0.26 Mg C ha−1 year−1and 0.95 Mg CO2 eq ha−1 year−1 on farmers' field of Rajasthan. At the state level, the reduction of GHG emission potential of agroforestry was found to be 1.42 million tonnes annually, which helps to cut carbon footprint and achieve targets of Paris agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajit, Dhyani, S. K., Newaj, R., Handa, A. K., Prasad, R., Alam, B., et al. (2013). Modeling analysis of potential carbon sequestration under existing agroforestry systems in three districts of Indo-gangetic plains in India. Agroforestry System, 87(5), 1129–1146.

    Article  Google Scholar 

  • Ajit, Dhyani, S. K., Handa, A. K., Newaj, R., Chavan, S. B., Alam, B., et al. (2017). Estimating carbon sequestration potential of existing agroforestry systems in India. Agroforestry Systems, 90(4), 1101–1118. https://doi.org/10.1007/s10457-016-9986-z.

    Article  Google Scholar 

  • Behera, U. K., & France, J. (2016). Integrated farming systems and the livelihood security of small and marginal farmers in India and other developing countries. Advances in Agronomy, 138, 235–282.

    Article  Google Scholar 

  • Bhati, T. K., Shalander, K., Amare, H., & Whitbread, A.M. (2017). Assessment of agricultural technologies for Dryland systems in South Asia: a case study of Western Rajasthan, India. International Crops Research Institute for the Semi-Arid Tropics (p. 68). Patancheru, Telangana, 502 324, India.

  • Chavan, S. B., & Dhillion, R. S. (2019). Doubling farmers’ income through Populus deltoides-based agroforestry systems in northwestern India: an economic analysis. Current Science, 117(2), 219–227.

    Article  Google Scholar 

  • Chavan, S., Newaj, R., Keerthika, A., Ram, A., Jha, A., & Kumar, A. (2014). Agroforestry for adaptation and mitigation of climate change. Popular Kheti, 4(1), 214–220.

    Google Scholar 

  • Chavan, S. B., Keerthika, A., Dhyani, S. K., Handa, A. K., Newaj, R., & Rajarajan, K. (2015). National Agroforestry Policy in India: A low hanging fruit. Current Science, 108(10), 1826–1834.

    Google Scholar 

  • Chavan, S. B., Uthappa, A. R., Sridhar, K. B., Keerthika, A., Handa, A. K., Newaj, R., et al. (2016). Trees for life: Creating sustainable livelihood in Bundelkhand region of Central India. Current Science, 11(6), 994–1002.

    Article  Google Scholar 

  • Dhillon, R. S., & George, V. W. (2013). Mitigation of global warming through renewable biomass. Biomass and Bioenergy, 48, 75–89.

    Article  Google Scholar 

  • Dhingra, S., & Mehta, R. (2017). AFOLU emissions. Version 2.0 from GHG platform India.

  • Dhyani, S. K. (2014). National Agroforestry Policy and the need for area estimation under agroforestry. Current Science, 107, 9–10.

    Google Scholar 

  • Dixon, R. K. (1995). Agroforestry systems: Sources of sinks of greenhouse gases? Agroforestry systems, 31(2), 99–116.

    Article  Google Scholar 

  • Duguma, L.A., Nzyoka, J., Minang, P.A., Bernard, F. (2017). How agroforestry propels achievement of Nationally Determined Contributions. ICRAF, Policy Brief no. 34. Nairobi: World Agroforestry Centre.

  • FSI. (2013). India State of Forest Report, Forest Survey of India, (Ministry of Environment & Forests). India: Dehradun.

    Google Scholar 

  • Gupta, D. K., Bhatt, R. K., Keerthika, A., Noor Mohamed, M. B., Shukla, A. K., & Jangid, B. L. (2019). Carbon sequestration potential of Hardwickia binata Roxb. Based agroforestry in hot semi-arid environment of India: An assessment of tree density impact. Current science., 116, 112–117.

    Article  CAS  Google Scholar 

  • IPCC. (2014). Climate change: synthesis report. Contribution of working Groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (p. 151). [Core Writing Team, R. K. Pachauri, & L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland.

  • Johnson, I., & Coburn, R. (2010). Trees for carbon sequestration. PRIMEFACT, 981, 1–9.

    Google Scholar 

  • Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems, 76, 1–10.

    Article  Google Scholar 

  • Kar, A. (2014). Agricultural land use in arid Western Rajasthan: Resource exploitation and emerging issues. Agropedology, 24(02), 179–196.

    Google Scholar 

  • Kaushik, N., & Kumar, V. (2003). Khejri (Prosopis cineraria)-based agroforestry system for arid Haryana, India. Journal of Arid Environments, 55, 433–440.

    Article  Google Scholar 

  • Keerthika, A., Chavan, S. B., & Shukla, M. (2015). Khejri agroforestry for addressing issues of soil health. Life science leaflet, 64, 102–108.

    Google Scholar 

  • Krishnan, P. R., & Jindal, S. K. (2015). Khejri, the king of Indian Thar desert is under phenophase change. Current Science, 108(11), 1987–1990.

    Google Scholar 

  • Mangalassery, S., Dayal, D., Meena, S. L., & Ram, B. (2014). Carbon sequestration in agroforestry and pasture systems in arid northwestern India. Current Science, 107, 1290–1293.

    CAS  Google Scholar 

  • Masera, O., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J., & Nabuurs, G. J. (2003). Modelling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecological Model, 164(177), 199.

    Google Scholar 

  • Mason, S. C., Maman, N., & Pale, S. (2015). Pearl millet production practices in Semi-Arid West Africa: A review. Experimental Agriculture, 51(4), 501–521.

    Article  Google Scholar 

  • Minang, P. A., Bernard, F., Noordwijk, M. V., & Kahurani, E. (2011). Agroforestry in REDD+: Opportunities and Challenges. Nairobi, Kenya: ASB Policy.

    Google Scholar 

  • Montagnini, F., & Nair, P. K. R. (2004). Carbon sequestration: An underexploited environmental benefit of agroforestry systems. Agroforestry Systems, 61, 281–295.

    Google Scholar 

  • Nair, P. K. R., Kumar, B. M., & Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science, 172(1), 10–23.

    Article  CAS  Google Scholar 

  • Nair, P. K. R., Nair, V. D., Kumar, B. M., & Showalter, J. M. (2010). Carbon sequestration in agroforestry systems. Advances in Agronomy, 108, 237–307.

    Article  CAS  Google Scholar 

  • Newaj, R., Chavan, S., & Prasad, R. (2013). Agroforestry as a strategy for climate change adaptation and mitigation. Indian Journal of Agroforestry, 15, 41–49.

    Google Scholar 

  • Newaj, R., Dhyani, S. K., Chavan, S. B., Rizvi, R. H., Prasad, R., Ajit, et al. (2014). Methodologies for assessing biomass, carbon stock and carbon sequestration in agroforestry systems. Jhansi: National Research Centre for Agroforestry.

    Google Scholar 

  • Newaj, R., Chavan, S., & Dhyani, S. K. (2015a). Agroforestry: Key for adaptation and mitigation of climate change. In S. K. Dhyani, R. Newaj, B. Alam, & I. Dev (Eds.), Agroforestry present status and way forward (pp. 207–228). New Delhi: Biotech Books.

    Google Scholar 

  • Newaj, R., Chavan, S. B., & Prasad, R. (2015b). Climate smart agriculture with special reference to agroforestry. Indian Journal of Agroforestry, 17, 98–108.

    Google Scholar 

  • Newaj, R., Chavan, S. B., Alam, B., & Dhyani, S. K. (2016). Biomass and carbon storage in trees grown under different agroforestry systems in semi-arid region of central India. Indian Forester, 142(7), 642–648.

    Google Scholar 

  • Newaj, R., Rizvi, R. H., Chaturvedi, O. P., Alam, B., Prasad, R., Kumar, D., et al. (2017). A country level assessment of area under agroforestry and its carbon sequestration potential (P. 48). Technical Bulletin 2/2017. ICAR-Central Agroforestry. Reserch Institute, Jhansi.

  • Prasad, J. V. N. S., Srinivas, K., Rao, C. S., Ramesh, C., Venkatravamma, K., & Venkateswarlu, B. (2012). Biomass productivity and carbon stocks of farm forestry and agroforestry systems of leucaena and eucalyptus in Andhra Pradesh, India. Current Science, 103(5), 536–540.

    CAS  Google Scholar 

  • Rathore, V. S., Tanwar, S. P. S., Kumar, P., & Yadav, O. P. (2019). Integrated farming system: Key to sustainability in arid and semi-arid regions. Indian Journal of Agricultural Sciences, 89(2), 181–192.

    CAS  Google Scholar 

  • Reed, J., van Vianen, J., Foli, S., Clendenning, J., Yang, K., MacDonald, M., et al. (2017). Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics. Forest Policy and Economics, 84, 62–71.

    Article  Google Scholar 

  • Rizvi, R. H., Dhyani, S. K., Newaj, R., Karmakar, P. S., & Saxena, A. (2014). Mapping agroforestry area in India through remote sensing and preliminary estimates. Indian Farming, 63, 62–64.

    Google Scholar 

  • Rizvi, R. H., Dhyani, S. K., Yadav, R. S., & Singh, R. (2011). Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of north-western India. Current science, 100(5), 736–742.

    CAS  Google Scholar 

  • Rizvi, R. H., Newaj, R., Karmakar, P. S., Saxena, A., & Dhyani, S. K. (2016a). Remote sensing analysis of agroforestry in Bathinda and Patiala districts of Punjab using sub-pixel method and medium resolution data. Journal of Indian Society of Remote Sensing., 44, 657–664.

    Article  Google Scholar 

  • Rizvi, R. H., Newaj, R., Prasad, R., Handa, A. K., Alam, B., Chavan, S. B., et al. (2016b). Assessment of carbon storage potential and area under agroforestry systems in Gujarat Plains by CO2FIX model and remote sensing techniques. Current Science, 110(10), 2005–2011.

    Article  CAS  Google Scholar 

  • Rosenstock, T. S., Wilkes, A., Jallo, C., Namoi, N., Bulusu, M., Suber, M., et al. (2019). Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agriculture, Ecosystems and Environment. https://doi.org/10.1016/j.agee.2019.106569.

    Article  Google Scholar 

  • Roy, M. M., Tiwari, J. C., & Ram, M. (2011). Agroforestry for climate change adaptation and livelihood improvement in Indian hot arid region. International Journal of Agriculture and Crop Science, 3(2), 43–54.

    Google Scholar 

  • Shankaranarayanan, K. A., Harsh, L. N., & Kathju, S. (1987). Agroforestry in the arid zones of India. Agroforestry System, 5, 69–88.

    Article  Google Scholar 

  • Singh, B., & Singh, G. (2015). Biomass production and carbon stock in a silvi-horti based agroforestry system in arid region of Rajasthan. Indian Forester, 141(12), 1237–1243.

    Google Scholar 

  • Singh, B. (2011). Agroforestry in arid region: diversified benefit for the local people. Jodhapur, Rajasthan: Arid Forest Research Institute.

    Google Scholar 

  • Singh, B., Bishnoi, M., Baloch, M. R., & Singh, G. (2013). Tree biomass, resource use and crop productivity in agri-horti-silvicultural systems in the dry region of Rajasthan, India. Archives of Agronomy and Soil Science, 60(8), 1031–1049. https://doi.org/10.1080/03650340.2013.864386.

    Article  Google Scholar 

  • Singh, G. (2005). Carbon sequestration under an agri-silvicultural system in the arid region. Indian Forester, 131(4), 543–552.

    CAS  Google Scholar 

  • Singh, G. S., Mutha, S., & Bala, N. (2007). Effect of tree density on productivity of a Prosopis cineraria agroforestry system in North Western India. Journal of Arid Environments, 70, 152–163.

    Article  Google Scholar 

  • Singh, I. S., Awasthi, O. P., Singh, R. S., More, T. A., & Meena, S. R. (2012). Changes in soil properties under tree species. Indian Journal of Agricultural Sciences, 82(2), 146–151.

    CAS  Google Scholar 

  • Tanwar, S. P. S., Kumar, P., Verma, A., Bhatt, R. K., Singh, A., Kanhaiya Lal, M., et al. (2019). Carbon sequestration potential of agroforestry systems in the Indian arid zone. Current Science, 117, 2014–2022.

    Article  CAS  Google Scholar 

  • Teklehaimanot, Z. (2004). Exploiting the potential of indigenous agroforestry trees: Parkia biglobosa and Vitellaria paradoxa in sub-Saharan Africa. Agroforestry Systems, 61, 207–220.

    Google Scholar 

  • Tewari, V. P., & Singh, M. (2006). Tree-crop interaction in the Thar Desert of Rajasthan (India). Sécheresse, 17(1–2), 326–332.

    Google Scholar 

  • Tiwari, J. C., Ram, M., Dagar J. C., & Roy, M. M. (2014). Livelihood improvements and climate change adaptations through agroforestry in hot arid environments (pp. 155–183).

  • UNFCCC. (2015). Adoption of the Paris Agreement. Conference of the Parties Twenty-first session Paris, 30 November to 11 December 2015.

  • United Nations General Assembly. (2015). Transforming our world: The 2030 agenda for sustainable development, A/ RES/70/1.

  • van der Gaast, W., Sikkema, R., & Vohrer, M. (2016). The contribution of forest carbon credit projects to addressing the climate change challenge. Climate Policy. https://doi.org/10.1080/14693062.2016.1242056.

    Article  Google Scholar 

  • Viswanath, S., Lubina, P. A., Subbanna, S., & Sandhya, M. C. (2018). Traditional agroforestry systems and practices: A review. Advanced Agricultural Research & Technology Journal, 2, 18–29.

    Google Scholar 

  • Viswanath, S., Nair, P. K. R., Kaushik, P. K., & Prakasam, U. (2000). Acacia nilotica trees in rice fields: A traditional agroforestry system in central India. Agroforestry Systems, 50, 157–177.

    Article  Google Scholar 

  • Walkley, A. J., & Black, C. A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • World Bank (2004). Sustaining Forest: A Development Strategy. World Bank, Washington, DC. Appendix 2, A-3.

  • Yadav, B. S., Yadav, B. L., & Chhipa, B. R. (2008). Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan, India. Agroforest Systems, 73, 1–12.

    Article  Google Scholar 

  • Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., et al. (2016). Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets. Scientific reports, 6, 29987.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Indian Council of Agricultural Research (ICAR), Directorate of Agricultural Research and Cooperation (DARE), Ministry of Agriculture and Farmers Welfare, Government of India, New Delhi, for the financial assistance provided under NICRA (National Initiative on Climate Resilient Agriculture) project to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Chavan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, S.B., Newaj, R., Rizvi, R.H. et al. Reduction of global warming potential vis-à-vis greenhouse gases through traditional agroforestry systems in Rajasthan, India. Environ Dev Sustain 23, 4573–4593 (2021). https://doi.org/10.1007/s10668-020-00788-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00788-w

Keywords

Navigation