Skip to main content

Advertisement

Log in

Modeling of high step-up converter in closed loop for renewable energy applications

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A majority of small-scale renewable energy sources including the solar PV modules, fuel cells gives out output voltage in the range of around 15–40 V DC. This needs to be stepped up to suit load requirements using a high voltage gain converter. Since renewable sources inherently generate sudden variations in input voltage, a good output voltage profile even during such random variations in input conditions is essential. This paper presents modeling of a high step-up converter configuration with closed loop control. The converter topology is designed to operate with moderate duty ratios and the simple coupled inductor. The converter is capable of high step-up and can find application in solar PV systems. The controller response is good with low steady state error and required dynamics. The modeling and simulation is carried out using MATLAB/Simulink software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Axelrod, B., Berkovich, Y., & Ioinovici, A. (2008). Switched-capacitor/switched-inductor structures for getting transformerless hybrid dc–dc PWM converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(2), 687–696.

    Article  Google Scholar 

  • Chen, S. M., Liang, T. J., Yang, L. S., & Chen, J. F. (2011). A cascaded high step-up dc–dc converter with single switch for micro source applications. IEEE Transactions on Power Electronics, 26(4), 1146–1153.

    Article  Google Scholar 

  • Chen, S.-M., Liang, T.-J., Yang, L.-S., & Chen, J.-F. (2012). A safety enhanced, high step-up DC–DC converter for AC photovoltaic module application. IEEE Transactions on Power Electronics, 27(4), 1809–1817.

    Article  Google Scholar 

  • Farmad, H. S., & Biglar, S. (2012). Integration of demand side management, distributed generation, renewable energy sources and energy storages. Integration of renewables into the distribution grid, CIRED 2012 workshop (Vol. 1, No. 4, pp. 29–30). doi:10.1049/cp.2012.0784.

  • Garcia-Valverde, R., Villarejo, J. A., Hösel, M., Madsen, M. V., Søndergaard, R. R., Jørgensen, M., et al. (2016). Scalable single point power extraction for compact mobile and stand-alone solar harvesting power sources based on fully printed organic photovoltaic modules and efficient high voltage DC/DC conversion. Solar Energy Materials and Solar Cells, 144, 48–54, ISSN 0927-0248. doi:10.1016/j.solmat.2015.08.020. (http://www.sciencedirect.com/science/article/pii/S0927024815004146).

  • Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industry Applications, 41(5), 1292–1306.

    Article  Google Scholar 

  • Liang, T.-J., Chen, S.-M., Yang, L.-S., Chen, J.-F., & Ioinovici, A. (2012). Ultra-large gain step-up switched-capacitor DC–DC converter with coupled inductor for alternative sources of energy. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(4), 864–874. doi:10.1109/TCSI.2011.2169886.

    Article  Google Scholar 

  • Nagaraj, R. (2012). Renewable energy based small hybrid power system for desalination applications in remote locations. In India international conference on power electronics, IICPE.

  • Nagaraj, R., & Panigrahi, B. K. (2015). Simulation and hardware implementation of FPGA based controller for hybrid power system. International Journal of Electrical Energy, 3(2), 86–93.

    Article  Google Scholar 

  • Nagaraj, R., et al. (2016). Techno-economic analysis of hybrid power system sizing applied to small desalination plants for sustainable operation. International Journal of Sustainable Built Environment. doi:10.1016/j.ijsbe.2016.05.

    Google Scholar 

  • Oyedepo, S. O., Agbetuyi, A. F., & Odunfa, M. K. (2014). Transmission network enhancement with renewable energy. Journal of Fundamentals of Renewable Energy and Applications, 5, 145. doi:10.4172/2090-4541.1000145.

    Google Scholar 

  • Rodriguez, C., & Amaratunga, G. A. J. (2008). Long-lifetime power inverter for photovoltaic ac modules. IEEE Transactions on Industrial Electronics, 55(7), 2593–2601.

    Article  Google Scholar 

  • Sagar, E., & Goel, R. (2014). Large scale grid amalgamation of renewable energy sources in indian power system. International Journal for Research & Development in Technology, 2(3), 1–4.

    Google Scholar 

  • Shimizu, T., Wada, K., & Nakamura, N. (2006). Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system. IEEE Transactions on Power Electronics, 21(5), 1264–1272.

    Article  Google Scholar 

  • Umeno, T, Takahashi, K., Ueno, F., Inoue, T., & Oota, I. (1991). A new approach to low ripple-noise switching converters on the basis of switched-capacitor converters. In Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 1077–1080.

  • Yang, L. S., & Liang, T. J. (2012). Analysis and implementation of a novel bidirectional dc–dc converter. IEEE Transactions on Industrial Electronics, 59(1), 422–434.

    Article  Google Scholar 

  • Zhao, Q., & Lee, F. C. (2003). High-efficiency, high step-up dc–dc converters. IEEE Transactions on Power Electronics, 18(1), 65–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nagaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraj, R., Thiruganamurthy, D. & Rajput, M.M. Modeling of high step-up converter in closed loop for renewable energy applications. Environ Dev Sustain 19, 2475–2485 (2017). https://doi.org/10.1007/s10668-016-9866-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9866-8

Keywords

Navigation