Skip to main content

Advertisement

Log in

Fishers’ local knowledge on impact of climate change and anthropogenic interferences on Hilsa fishery in South Asia: evidence from Bangladesh

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The anadromous fish species Hilsa (Tenualosa ilisha) constitutes the largest single fishery in Bangladesh and West Bengal, India. River Meghna is the important habitat for Hilsa as the major breeding and nursing grounds are situated along this portion of the river. In this paper, we investigate fishers’ perceptions on effect of climate change and anthropogenic impact on Hilsa fishery at lower Meghna. Fishers’ ecological knowledge indicates that the stock of Hilsa is declining due to several adverse climatic conditions such as increased water temperature, salinity intrusion and low freshwater discharge from upstream. Fishers believe that dams and polders have immense effect on river sedimentation which already blockade several upward migratory route of Hilsa. Fishers’ experience shows that intensity of coastal cyclone is gradually increasing, which causes severe physical and economical damage. The study also indicates that the major constraints to adopt with the change situation are low level of human capital and restricted access to the formal credit system. Therefore, incorporation of local knowledge in governmental policy formulation and public support to improve human skill are essential for the adaptive management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockstrom, J. (2005). Social-ecological resilience to coastal disasters. Science, 309(5737), 1036–1039. doi:10.1126/science.1112122.

    Article  CAS  Google Scholar 

  • Ahamed, M. (2013). Community based approach for reducing vulnerability to natural hazards (cyclone, storm surges) in coastal belt of Bangladesh. Procedia Environmental Sciences, 17, 361–371.

    Article  Google Scholar 

  • Ahmad, M. H., Hamid, M., Koumleh, M. H., Lahiji, M. A., & Roostapoor, N. (2013). The effect of air temperature on water temperature via traditional and statistical experimental design in Johor Bahru (Malaysia). Journal of Applied Geology and Geophysics, 1, 49–52.

    Article  Google Scholar 

  • Ahsan, D. A. (2014). Does natural disaster influence people’s risk preference and trust? An experiment from cyclone prone coast of Bangladesh. International Journal of Disaster Risk Reduction, 9, 48–57. doi:10.1016/j.ijdrr.2014.02.005.

    Article  Google Scholar 

  • Ahsan, D. A., Naser, M. N., Bhoumik, U., Hazra, S., & Bhattacharya, S. B. (2014). Migration, spawning patterns and conservation of Hilsa shad (Tenualosa ilisha) in Bangladesh and India. New Delhi: Academic Foundation.

    Google Scholar 

  • Allison, E. H., Perry, A. L., Badjeck, M., Adger, W. N., Brown, K., Conway, D., et al. (2009). Vulnerability of national economics to the impacts of climate change on fisheries. Fish and Fisheries, 10, 173–196. doi:10.1111/j.1467-2979.2008.00310.x.

    Article  Google Scholar 

  • Aswani, S., & Lauer, M. (2014). Indigenous people’s detection of rapid ecological change. Conservation Biology, 28(3), 820–828. doi:10.1111/cobi.12250.

    Article  Google Scholar 

  • Begossi, A. (2010). Small-scale fisheries in Latin America: Management models and challenges. MAST, 9(2), 7–31.

    Google Scholar 

  • Begossi, A., Silvano, R. A. M., Do Amaral, B. D., & Oyakawa, O. T. (1999). Uses of fish and game by inhabitants of an extractive reserve (Upper Juruá, Acre, Brazil). Environment, Development and Sustainability, 1(1), 73–93.

    Article  Google Scholar 

  • Bhaumik, U. (2010). Status of fishery of Indian Shad (Tenualosa illisha) with reference to the Hooghly river system. In 21st All India Congress of Zoology (pp. 21–23).

  • Bhuiyan, M. J. A., & Dutta, D. (2012). Assessing impacts of sea level rise on river salinity in the Gorai river network, Bangladesh. Estuarine, Coastal and Shelf Science, 96(1), 219–227. doi:10.1016/j.ecss.2011.11.005.

    Article  CAS  Google Scholar 

  • Castello, L., Viana, J. P., Watkins, G., Pinedo-Vasquez, M., & Luzadis, V. A. (2009). Lessons from integrating fishers of arapaima in small-scale fisheries management at the Mamirauá Reserve. Amazon. Environmental Management, 43(2), 197–209.

    Article  Google Scholar 

  • Castillo, J., Barbieri, M. A., & Gonzalez, A. (1996). Relationships between sea surface temperature, salinity, and pelagic fish distribution off northern Chile. ICES Journal of Marine Science: Journal du Conseil, 53(2), 139–146. doi:10.1006/jmsc.1996.0014.

    Article  Google Scholar 

  • Castro, F. D., & McGrath, D. G. (2003). Moving toward sustainability in the local management of floodplain lake fisheries in the Brazilian Amazon. Human Organization, 62(2), 123–133.

    Article  Google Scholar 

  • Dasgupta, S., Huq, M., Khan, Z. H., Ahmed, M. M. Z., Mukherjee, N., Khan, M. F., & Pandey, K. (2011). Cyclones in a changing climate: The case of Bangladesh. London: Department for Environment, Food and Rural Affairs.

    Google Scholar 

  • De Silva, S. S., & Soto, D. (2009). Climate change and aquaculture: Potential impacts, adaptation and mitigation. Climate change implications for fisheries and aquaculture: Overview of current scientific knowledge. FAO Fisheries and Aquaculture Technical Paper, 530, 151–212.

    Google Scholar 

  • Department of Fisheries. (2005). Hilsha conservation and management. Training, Department of Fisheries, Dhaka, Bangladesh.

  • Dulvy, N. K., Rogers, S. I., Jennings, S., Stelzenmüller, V., Dye, S. R., & Skjoldal, H. R. (2008). Climate change and deepening of the North Sea fish assemblage: A biotic indicator of warming seas. Journal of Applied Ecology, 45(4), 1029–1039. doi:10.1111/j.1365-2664.2008.01488.x.

    Article  Google Scholar 

  • Edwards, M., & Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature, 430(7002), 881–884. doi:10.1038/nature02808.

    Article  CAS  Google Scholar 

  • Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. AMBIO: A Journal of the Human Environment, 31(5), 437–440. doi:10.1579/0044-7447-31.5.437.

    Article  Google Scholar 

  • Folke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive governance of social-ecological systems. Annual Review of Environment and Resources, 30, 441–473. doi:10.1146/annurev.energy.30.050504.144511.

    Article  Google Scholar 

  • Folke, C., Jansson, A., Rockström, J., Olsson, P., Carpenter, S. R., Chapin, F. S, I. I. I., et al. (2011). Reconnecting to the biosphere. AMBIO: A Journal of the Human Environment, 40(7), 719–738. doi:10.1007/s13280-011-0184-y.

    Article  Google Scholar 

  • Gain, A. K., & Giupponi, C. (2014). Impact of the Farakka dam on thresholds of the hydrologic flow regime in the lower Ganges river basin (Bangladesh). Water, 6(8), 2501–2518. doi:10.3390/w6082501.

    Article  Google Scholar 

  • Haines, A., Kovats, R. S., Campbell-Lendrum, D., & Corvalán, C. (2006). Climate change and human health: Impacts, vulnerability and public health. Public Health, 120(7), 585–596. doi:10.1016/j.puhe.2006.01.002.

    Article  CAS  Google Scholar 

  • Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., et al. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature, 454(7200), 96–99. doi:10.1038/nature07051.

    Article  CAS  Google Scholar 

  • Hallwass, G., Lopes, P. F., Juras, A. A., & Silvano, R. A. (2013). Fishers’ knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers. Ecological Applications, 23(2), 392–407. doi:10.1890/12-0429.1.

    Article  Google Scholar 

  • Haroon, Y. (1998). Hilsa shad: Fish for the teeming millions, new management alternatives needed for the hilsa young. Shad Journal, 3, 7.

    Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • IPCC. (1999). The regional impacts of climate change: An assessment of vulnerability. A special report of IPCC working group II. In R. T. Watson, M. C. Zinyowera, & R. H. Moss (Eds.), Cambridge University Press, UK.

  • IPCC (AR4). (2007). Climate change 2007: Synthesis report. https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm. Accessed April 24, 2015.

  • IPCC. (2014). Climate change 2014 synthesis report summary for policymakers. https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_SPM.pdf. Accessed April 24, 2015.

  • Islam, M. S., Alam, R., Khan, M. Z. H., Khan, M. N. A. A., & Jahan, S. N. (2013). Methodology of crest level design of coastal polders in Bangladesh. Paper presented in 4th International Conference on Water & Flood Management.

  • Kelkar, N. (2012). Fishing for scrap: Sustaining river fisheries in the face of ecosystem degradation, socio-political dynamics and poverty in the Gangetic basin. A brief report on the status of river fisheries: Causes of decline, conflicts and potential alternatives. Report submitted to the Parliamentary Committee on Fisheries, Department of Agriculture. Government of India. New Delhi, 40 p.

  • Kovats, R. S., Bouma, M. J., Hajat, S., Worrall, E., & Haines, A. (2003). El Niño and health. The Lancet, 362(9394), 1481–1489. doi:10.1016/S0140-6736(03)14695-8.

    Article  Google Scholar 

  • Lafferty, K. D., Porter, J. W., & Ford, S. E. (2004). Are diseases increasing in the ocean? Annual Review of Ecology Evolution and Systematics, 35, 31–54. doi:10.1146/annurev.ecolsys.35.021103.105704.

    Article  Google Scholar 

  • Lagler, K. F., Bardach, J. E., & Miller, R. R. (1962). Ichthyology. New York: Wiley.

    Google Scholar 

  • Lehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K., et al. (2006). Climate variability, fish, and fisheries. Journal of Climate, 19(20), 5009–5030. doi:10.1175/JCLI3898.1.

    Article  Google Scholar 

  • Lopes, P. F., Silvano, R. A., & Begossi, A. (2011). Extractive and sustainable development reserves in Brazil: Resilient alternatives to fisheries? Journal of Environmental Planning and Management, 54(4), 421–443. doi:10.1080/09640568.2010.508687.

    Article  Google Scholar 

  • McClanahan, T. R., Cinner, J. E., Maina, J., Graham, N. A. J., Daw, T. M., Stead, S. M., et al. (2008). Conservation action in a changing climate. Conservation Letters, 1(2), 53–59. doi:10.1111/j.1755-263X.2008.00008_1.x.

    Article  Google Scholar 

  • Miah, M. S. (2015). Climatic and anthropogenic factors changing spawning pattern and production zone of Hilsa fishery in the Bay of Bengal. Weather and Climate Extremes, 7, 109–115.

    Article  Google Scholar 

  • Mirza, M. M. Q. (1997). Hydrological changes in the Ganges system in Bangladesh in the post Farakka period. Hydrological Sciences Journal, 42(5), 613–631. doi:10.1080/02626669709492062.

    Article  CAS  Google Scholar 

  • Mohammed, E. Y. (2014). Economic incentives for marine and coastal conservation: Prospects, challenges and policy implications. UK: Routledge.

    Google Scholar 

  • Morrill, J. C., Bales, R. C., & Conklin, M. H. (2005). Estimating Stream temperature from air temperature: Implications for future water quality. Journal of Environmental Engineering, 131(1), 139–146.

    Article  CAS  Google Scholar 

  • Nowreen, S., Jalal, M. R., & Khan, M. S. A. (2013). Historical analysis of rationalizing South West coastal polders of Bangladesh. Water Policy, 16(2), 264–279. doi:10.2166/wp.2013.172.

    Article  Google Scholar 

  • O’Reilly, C. M., Alin, S. R., Plisnier, P. D., Cohen, A. S., & McKee, B. A. (2003). Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature, 424(6950), 766–768. doi:10.1038/nature01833.

    Article  Google Scholar 

  • Osterblom, H., Merrie, A., Metian, M., Boonstra, W. J., Blenckner, T., Watson, J. R., et al. (2013). Modeling social-ecological scenarios in marine systems. BioScience, 63(9), 735–744. doi:10.1093/bioscience/63.9.735.

    Article  Google Scholar 

  • Osterblom, H., Sissenwine, M., Symes, D., Kadin, M., Daw, T., & Folke, C. (2011). Incentives, social-ecological feedbacks and European fisheries. Marine Policy, 35(5), 568–574. doi:10.1016/j.marpol.2011.01.018.

    Article  Google Scholar 

  • Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325, 419–422. doi:10.1126/science.1172133.

    Article  CAS  Google Scholar 

  • Paul, B. K. (2009). Why relatively fewer people died? The case of Bangladesh’s cyclone Sidr. Natural Hazards, 50(2), 289–304. doi:10.1007/s11069-008-9340-5.

    Article  Google Scholar 

  • Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science, 308(5730), 1912–1915. doi:10.1126/science.1111322.

    Article  CAS  Google Scholar 

  • Piccolo, J. (2012). Gasping fish and panting squids: Oxygen, temperature and the growth of water-breathing animals. Fish and Fisheries, 13(3), 359. doi:10.1111/j.1467-2979.2012.00461.x.

    Article  Google Scholar 

  • Portner, H. O. (2010). Oxygen-and capacity-limitation of thermal tolerance: A matrix for integrating climate-related stressor effects in marine ecosystems. The Journal of experimental biology, 213(6), 881–893. doi:10.1242/jeb.037523.

    Article  Google Scholar 

  • Portner, H. O., & Knust, R. (2007). Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science, 315(5808), 95–97. doi:10.1126/science.1135471.

    Article  Google Scholar 

  • Rosegrant, M. W., & Cline, S. A. (2003). Global food security: Challenges and policies. Science, 302(5652), 1917–1919. doi:10.1126/science.1092958.

    Article  CAS  Google Scholar 

  • Sadovy, Y. (2005). Trouble on the reef: The imperative for managing vulnerable and valuable fisheries. Fish and Fisheries, 6(3), 167–185. doi:10.1111/j.1467-2979.2005.00186.x.

    Article  Google Scholar 

  • Sanghi, R. (ed.) (2014). Our national river Ganga: Lifeline of millions. Switzerland: Springer. doi:10.1007/978-3-319-00530-0_1.

  • Silvano, R. A., Hallwass, G., Lopes, P. F., Ribeiro, A. R., Lima, R. P., Hasenack, H., et al. (2014). Co-management and spatial features contribute to secure fish abundance and fishing yields in tropical floodplain lakes. Ecosystems, 17(2), 271–285. doi:10.1007/s10021-013-9722-8.

    Article  CAS  Google Scholar 

  • SRDI. (2010). Saline soils of Bangladesh. Ministry of Agriculture, Dhaka, Bangladesh: Soil Resources Development Institute.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewan Ahsan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, I., Ahsan, D. & Farque, M.H. Fishers’ local knowledge on impact of climate change and anthropogenic interferences on Hilsa fishery in South Asia: evidence from Bangladesh. Environ Dev Sustain 19, 461–478 (2017). https://doi.org/10.1007/s10668-015-9740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-015-9740-0

Keywords

Navigation