Skip to main content

Advertisement

Log in

Numerical Modeling of the Impact of a Pumped-Storage Hydroelectric Power Plant on the Reservoirs’ Thermal Stratification Structure: a Case Study in NW Spain

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Pumped-storage hydroelectric power plants are generally perceived as an environmentally respectful technology. Nevertheless, the pumping of water from a lower reservoir to an upper impoundment, and the return of that water during power generation, can strongly affect the water quality of the reservoirs. In particular, plant operation can alter their thermal structure, deep water mixing, and water circulation characteristics. The objective of this study is to quantify, through the use of 3D hydrodynamic modeling, the potential impacts of a pumped-storage hydroelectric plant on the thermal stability and mixing of two reservoirs in Galicia, northwest of Spain. To this end, three-dimensional hydrodynamic simulations were conducted using the model Delft3D. Two different coupled models, one for each reservoir, were constructed and subsequently tested for several stratification scenarios, according to measured temperature profiles during the spring and summer season. Several reservoir minimum and maximum operation water levels were also considered. Model simulations demonstrated a high level of mixing in the vicinity of the intake-outlet structures, in particular during startup of the power plant, regardless of the water level in the reservoir. Beyond this area, the results showed a limited overall effect on stratification and mixing in the upper reservoir, owing to the relation between the inflow temperatures and the initial temperature profile of this reservoir. A more significant alteration of the thermal structure is expected in the lower reservoir due to its narrow shape and shallow depth at the structure location, as well as the temperature differences between receiving waters and inflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahlfeld, D., Joaquin, A., Tobiason, J., & Mas, D. (2003). Case study: impact of reservoir stratification on interflow travel time. Journal of Hydraulic Engineering, 966–975. doi:10.1061/(ASCE)0733-9429(2003)129:12(966).

  2. Alavian, V., Jirka, G., Denton, R., Johnson, M., and Stefan, H. (1992). Density currents entering lakes and reservoirs. Journal of Hydraulic Engineering, 1464–1489. doi:10.1061/(ASCE)0733-9429(1992)118:11(1464).

  3. An, S., & Julien, P. Y. (2014). Three-dimensional modeling of turbid density currents in Imha Reservoir, South Korea. Journal of Hydraulic Engineering, 05014004. doi:10.1061/(ASCE)HY.1943-7900.0000851.

  4. Anderson, M. A. (2010). Influence of pumped-storage hydroelectric plant operation on a shallow polymictic lake: predictions from 3-D hydrodynamic modeling. Lake and Reservoir Management, 26(1), 1–13.

    Article  Google Scholar 

  5. Bermúdez, M., Pietrzak, J. D., Cea, L., Puertas, J., Stelling, G. S., & de Boer, G. J. (2013). A numerical study of mixing and stratification dynamics in the ría de Arousa estuary (NW Spain) during summer. In Proceedings Coastal Dynamics, 161–172. Arcachon, France, 24–28 June. Available via: http://repository.tudelft.nl.

  6. Bonalumi, M., Anselmetti, F. S., Kaegi, R., & Wüest, A. (2011). Particle dynamics in high-Alpine proglacial reservoirs modified by pumped-storage operation. Water Resources Research, 47, W09523. doi:10.1029/2010WR010262.

    Article  Google Scholar 

  7. Bonalumi, M., Anselmetti, F. S., Wüest, A., & Schmid, M. (2012). Modeling of temperature and turbidity in a natural lake and a reservoir connected by pumped-storage operations. Water Resources Research, 48, W08508. doi:10.1029/2012WR011844.

    Article  Google Scholar 

  8. Bormann, H., & Andersen Martinez, I. (2014). Towards and indicator based framework analysing the suitability of existing dams for energy storage. Water Resources Management, 28, 1613–1630. doi:10.1007/s11269-014-0569-3.

    Article  Google Scholar 

  9. Bühler, J., Siegenthaler, C., & Wüest, A. (2005). Turbidity currents in an alpine pumped—storage reservoir. In Lee & Lam (Eds.), Environmental hydraulics and sustainable water management (Vol. 1, pp. 239–244). London: A.A. Balkema.

    Google Scholar 

  10. Cáceres, L., Agha, R., Sanchez, A., Bueres, A., Serrano, L., & Quesada, A. (2013). Modelización del afloramiento de cianobacterias. El caso del embalse de As Conchas. III Congreso Ibérico de Cianotoxinas, 10–12 julio 2013. Blanes, España (in Spanish).

  11. Cao, Z., Li, J., Pender, G., & Liu, Q. (2014). Whole-process modeling of reservoir turbidity currents by a double layer-averaged model. Journal of Hydraulic Engineering. doi:10.1061/(ASCE)HY.1943-7900.0000951 04014069.

    Google Scholar 

  12. Chung, S. W., & Gu, R. (1998). Two-dimensional simulations of contaminant currents in stratified reservoir. Journal of Hydraulic Engineering, 124, 704–711. doi:10.1061/ (ASCE)0733-9429(1998)124:7(704).

    Article  Google Scholar 

  13. Chung, S. W., Hipsey, M. R., & Imberger, J. (2009). Modelling the propagation of turbid density inflows into a stratified lake: Daecheong Reservoir, Korea. Environmental Modelling & Software, 24, 1467–1482.

    Article  Google Scholar 

  14. Dallimore, C., Hodges, B., & Imberger, J. (2003). Coupling an underflow model to a three-dimensional hydrodynamic model. Journal of Hydraulic Engineering, 129, 748–757. doi:10.1061/(ASCE)0733-9429(2003)129:10(748).

    Article  Google Scholar 

  15. Dallimore, C. J., Imberger, J., & Hodges, B. R. (2004). Modeling a plunging underflow. Journal of Hydraulic Engineering. doi:10.1061/(ASCE)0733-9429(2004)130:11(1068.

    Google Scholar 

  16. De Cesare, G., Boillat, J.-L., & Schleiss, A. J. (2006). Circulation in stratified lakes due to flood-induced turbidity currents. ASCE Journal of Environmental Engineering, 132(11) ISSN 0733-9372, 1508–1517. doi:10.1061/(ASCE)0733-9372(2006)132:11(1508).

    Article  CAS  Google Scholar 

  17. Deltares (2012). “Delft3D-FLOW user manual.” Deltares, Delft (available via oss.deltares.nl).

  18. Dortch, M. S. (1997). Water quality considerations in reservoir management. University Council on Water Resources, 108(Summer), 32–42.

    Google Scholar 

  19. Gelda, R. K., & Effler, S. (2007). Testing and application of a two-dimensional hydrothermal model for a water supply reservoir: implications of sedimentation. Journal of Environmental Engineering and Science, 6(1), 73–84.

    Article  Google Scholar 

  20. Gerritsen, H., de Goede, E.D., Platzek, F.W., van Kester, J.A.Th.M., Genseberger, M., & Uittenbogaard, R.E. (2008). “Validation document Delft3D-FLOW—a software system for 3D simulations.” Deltares. Report X0356, M3470.

  21. Hanna, R. B., Saito, L., Bartholow, J. M., & Sandelin, J. (1999). Results of simulated temperature control device operations on in-reservoir and discharge water temperatures using CE-QUAL-W2. Lake and Reservoir Management, 15(2), 87–102.

    Article  Google Scholar 

  22. Hogg, C. A. R., Marti, C. L., Huppert, H. E., & Imberger, J. (2013). Mixing of an interflow into the ambient water of Lake Iseo. Limnology and Oceanography, 58(2), 579–592.

    Article  Google Scholar 

  23. IAHR (International Association for Hydraulic Research). (1994). “Guidelines for documenting the validity of computational modelling software.” IAHR, P.O. Box 177, 2600 MH Delft, The Netherlands.

  24. Ibarra, G., de la Fuente, A., & Contreras, M. (2015). Effects of hydropeaking on the hydrodynamics of a stratified reservoir: the Rapel Reservoir case study. Journal of Hydraulic Research, 53(6), 760–772.

    Article  Google Scholar 

  25. Ihle, C. F., & Niño, Y. (2012). The onset of natural convection in lakes and reservoirs due to night time cooling. Environmental Fluid Mechanics, 12, 133–144.

    Article  Google Scholar 

  26. Imboden, D.M. (1980). “The impact of pumped storage operation on the vertical temperature structure in a deep lake: a mathematic model.” In: Clugston JP, editor. Proceedings of the Clemson Workshop on Environmental Impacts of Pumped Storage Hydroelectric Operations. Fish and Wildlife Service, US Dept. of the Interior. FWS/OBS-80/28. p. 125–146.

  27. Imran, J., Kassem, A., & Khan, S. M. (2004). Three-dimensional modeling of density current. I. Flow in straight confined and unconfined channels. Journal of Hydraulic Research, 42(6), 578–590.

    Article  Google Scholar 

  28. Imteaz, M. A., Asaeda, T., & Lockington, D. A. (2003). Modelling the effects of inflow parameters on lake water quality. Environmental Modeling and Assessment, 8, 63–70.

    Article  Google Scholar 

  29. Kim, Y., & Kim, B. (2006). Application of a 2-dimensional water quality model (CE-QUAL-W2) to the turbidity interflow in a deep reservoir (Lake Soyang, Korea). Lake and Reservoir Management, 22(3), 213–222.

    Article  CAS  Google Scholar 

  30. Kucukali, S. (2014). Finding the most suitable existing hydropower reservoirs for the development of pumped-storage schemes: an integrated approach. Renewable and Sustainable Energy Reviews, 37, 502–508.

    Article  Google Scholar 

  31. Lai, Y., Huang, J., & Wu, K. (2015). Reservoir turbidity current modeling with a two-dimensional layer-averaged model. Journal of Hydraulic Engineering. doi:10.1061/(ASCE)HY.1943-7900.0001041 04015029.

    Google Scholar 

  32. Li, Y., Acharya, K., Chen, D., & Stone, M. (2010). Modeling water ages and thermal structure of Lake Mead under changing water levels. Lake and Reservoir Management, 26(4), 258–272.

    Article  CAS  Google Scholar 

  33. Marti, C. L., Mills, R., & Imberger, J. (2011). Pathways of multiple inflows into a stratified reservoir. Advances in Water Resources, 34, 551–561.

    Article  Google Scholar 

  34. Müller, M., De Cesare, G., & Schleiss, A. J. (2014). Continuous long-term observation of suspended sediment transport between two pumped-storage reservoirs. Journal of Hydraulic Engineering, 140(5), 05014003.

    Article  Google Scholar 

  35. Müller, M., De Cesare, G., & Schleiss, A. J. (2016). Flow field in a pumped-storage reservoir, measurements and numerical modeling. Journal of Applied Water Engineering and Research. doi:10.1080/23249676.2016.1224692.

    Google Scholar 

  36. Nicklisch, A., Shatwell, T., & Kohler, J. (2008). Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom. Journal of Plankton Research, 30(1), 75–91.

    Article  Google Scholar 

  37. Nowlin, W. H., Evarts, J. L., & Vanni, M. J. (2005). Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshwater Biology, 50, 301–322.

    Article  CAS  Google Scholar 

  38. Oehy, C., & Schleiss, A. (2007). Control of turbidity currents in reservoirs by solid and permeable obstacles. Journal of Hydraulic Engineering, 133, 637–648. doi:10.1061/(ASCE)0733-9429(2007)133:6(637).

    Article  Google Scholar 

  39. Owens, E. M., Effler, S. W., O'Donnell, D. M., & Matthews, D. A. (2014). Modeling the fate and transport of plunging inflows to Onondaga Lake. Journal of the American Water Resources Association, 50(1), 205–218.

    Article  Google Scholar 

  40. Potter, D. U., Stevens, M. P., & Meyer, J. L. (1982). Changes in physical and chemical variables in a new reservoir due to pumped storage operations. Water Resources Bulletin, 18, 627–633.

    Article  CAS  Google Scholar 

  41. Prats, J., Morales-Baquero, R., Dolz, J., & Armengol, J. (2014). Contributions from limnology to reservoir management. Ingenieria del Agua, 18(1), 83–97. doi:10.4995/ia.2014.3145.

  42. Rossel, V., & de la Fuente, A. (2015). Assessing the link between environmental flow, hydropeaking operation and water quality of reservoirs. Ecological Engineering, 85, 26–38.

    Article  Google Scholar 

  43. Saadatpour, M., & Afshar, A. (2013). Multi objective simulation-optimization approach in pollution spill response management model in reservoirs. Water Resources Management, 27(6), 1851–1865.

    Article  Google Scholar 

  44. Simpson, J. H., & Bowers, D. (1981). Models of stratification and frontal movement in shelf seas. Deep Sea Res. Part I Oceanogr. Res. Pap, 28A(7), 727–728.

    Article  Google Scholar 

  45. Sydor, K. M., & Waterman, P. J. (2010). Engineering and design: the value of CFD modeling in designing a hydro plant. Hydro Review, 29(6), 46–54. Retrieved from www.hydroworld.com.

  46. Teklemariam, E., Korbaylo, B., Groeneveld, J., & Fuchs, D. (2002). Computational fluid dynamics: diverse applications in hydropower project’s design and analysis. In Proceedings of the CWRA 55th Annual Conference, Winnipeg, Man., 11–14 June.

  47. US Bureau of Reclamation. (1993). Aquatic ecology studies of Twin Lakes, Colorado, 1971–1986: effects of a pumped-storage hydroelectric project on a pair of montane lakes. Monograph No. 43, Denver (CO). p. 200.

  48. Vidal, J., Marce, R., Serra, T., Colomer, J., Rueda, F., & Casamitjana, X. (2012). Localized algal blooms induced by river inflows in a canyon type reservoir. Aquatic Sciences, 74, 315–327.

    Article  CAS  Google Scholar 

  49. Yang, C. J., & Jackson, R. B. (2011). Opportunities and barriers to pumped-hydro energy storage in the United States. Renewable and Sustainable Energy Reviews, 15, 839–844.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gas Natural Fenosa for providing data and financial support and AECOM URS España for providing the field data. María Bermúdez gratefully acknowledges financial support from the Spanish Regional Government of Galicia (Postdoctoral grant ED481B 2014/156-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Bermúdez.

Electronic supplementary material

ESM 1

(PDF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermúdez, M., Cea, L., Puertas, J. et al. Numerical Modeling of the Impact of a Pumped-Storage Hydroelectric Power Plant on the Reservoirs’ Thermal Stratification Structure: a Case Study in NW Spain. Environ Model Assess 23, 71–85 (2018). https://doi.org/10.1007/s10666-017-9557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9557-3

Keywords

Navigation