Skip to main content
Log in

Implementing In-Stream Nutrient Processes in Large-Scale Landscape Modeling for the Impact Assessment on Water Quality

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

For a long time, watershed models focused on the transport of chemicals from the terrestrial part of the watershed to the surface water bodies by leaching and erosion. After the substances had reached the surface water, they were routed through the channel network often without any further transformation. Today, there is a need to extend watershed models with in-stream processes to bring them closer to natural conditions and to enhance their usability as support tools for water management and water quality policies. This paper presents experience with implementing in-stream processes in a ecohydrological dynamic watershed model and its application on the large scale in the Saale River basin in Germany. Results demonstrate that new implemented water quality parameters like chlorophyll a concentrations or oxygen amount in the reach can be reproduced quite well, although the model results, compared with results achieved without taking into account algal and transformation processes in the river, show obvious improvement only for some of the examined nutrients. Finally, some climate and water management scenarios expected to impact in-stream processes in the Saale basin were run. Their results illustrate the relative importance of physical boundary conditions on the amount and concentration of the phytoplankton, which leads to the conclusion that measures to improve water quality should not only take nutrient inputs into account but also climate influences and river morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arnold, J. G., & Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes, 19, 563–572.

    Article  Google Scholar 

  2. Arnold, J. G., Williams, J. R., Srinivasan, R., King, K. W., & Griggs, R. H. (1994). SWAT: Soil and Water Assessment Tool. Temple: USDA, Agriculture Research Service, Grassland, Soil and Water Research Laboratory.

    Google Scholar 

  3. Behrendt, H., Kornmilch, M., Opitz, D., Schmoll, O., & Scholz, G. (2001). Flussgebietsdifferenzierte Nährstoffeinträge im Einzugsgebiet der Saale. In M. Rode, K. Henle, & A. Schellenberger (Eds.), Erhalt und Regenerierung der Flußlandschaft Saale (pp. 91–108). Halle: Deutsche Akademie der Naturforscher Leopoldina.

    Google Scholar 

  4. BfG (Bundesanstalt für Gewässerkunde). (1996). Molekularbiologische Grundlagen und limnologische Bedeutung der Lichthemmung (Photoinhibition) der Photosynthese in Fließgewässern. BfG-Mitteilungen Nr. 13. Koblenz: BfG.

    Google Scholar 

  5. Brown, L. C., & Barnwell, T. O. (1987). The enhanced water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. Athens: USEPA. EPA/600/3-87/007.

    Google Scholar 

  6. Debele, R., Srinivasan, R., & Parlange, J.-Y. (2008). Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling and Assessment, 13(1), 135–153.

    Article  Google Scholar 

  7. EC (European Commission). (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. (EU Water Framework Directive, WFD) (p. L 327). Brussels: Official Journal of the European Communities.

    Google Scholar 

  8. Ennet, P., Pachel, K., Viies, V., Jürimägi, L., & Elken, R. (2008). Estimating water quality in river basins using linked models and databases. Estonian Journal of Ecology, 57(2), 83–99.

    Article  Google Scholar 

  9. Everbecq, E., Gosselain, V., Viroux, L., & Descy, J.-P. (2001). POTAMON: a dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Research, 35(4), 901–912.

    Article  CAS  Google Scholar 

  10. FGG-Elbe (2004a). Bericht über die Umsetzung der Anhänge II, III und IV der Richtlinie 2000/60/EG im Koordinierungsraum Saale (B-Bericht). Vorlage zur Elbe-Ministerkonferenz am 9. Dezember 2004.

  11. FGG-Elbe (2004b). Bericht über die Umsetzung der Anhänge II, III und IV der Richtlinie 2000/60/EG im Koordinierungsraum Saale (B-Bericht). Appendix 1: Tables 1a, 1b, and 2.

  12. Garnier, J., Billen, G., & Coste, M. (1995). Seasonal succession of diatoms and Chlorophyceae in the drainage network of the seine river: observations and modeling. Limnology and Oceanography, 40(4), 750–765.

    Article  CAS  Google Scholar 

  13. Gassmann, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211–1250.

    Google Scholar 

  14. Gerstengarbe, F.-W., & Werner, P. C. (2005). Simulationsergebnisse des regionalen Klimamodells STAR. In F. Wechsung, A. Becker, & P. Gräfe (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet (pp. 110–118). Berlin: Weißenseeverlag.

    Google Scholar 

  15. Gosselain, V., Descy, J.-P., Viroux, L., Joaquim-Justo, C., Hammer, A., Métens, A., et al. (1998). Grazing by large river zooplankton: a key to summer potamoplankton decline? The case of the Meuse and Moselle rivers in 1994 and 1995. Hydrobiologia, 369(370), 199–216.

    Article  Google Scholar 

  16. Hattermann, F. F., Krysanova, V., Habeck, A., & Bronstert, A. (2006). Integrating wetlands and riparian zones in river basin modelling. Ecological Modelling, 199(4), 379–392.

    Article  Google Scholar 

  17. Hesse, C., Krysanova, V., Päzolt, J., & Hattermann, F. F. (2008). Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling, 218, 135–148.

    Article  Google Scholar 

  18. Hesser, F. B., Franko, U., & Rode, M. (2010). Spatially distributed lateral nitrate transport at the catchment scale. Journal of Environmental Quality, 39, 193–203.

    Article  CAS  Google Scholar 

  19. Holst, H., Zimmermann-Timm, H., & Kausch, H. (2002). Longitudinal and transverse distribution of plankton rotifers in the potamal of the River Elbe (Germany) during late summer. International Review of Hydrobiology, 87(2–3), 267–280.

    Article  Google Scholar 

  20. Horn, A. L., Rueda, F. J., Hörmann, G., & Fohrer, N. (2004). Implementing river water quality modelling issues in mesoscale watershed models for water policy demands—an overview on current concepts, deficits, and future tasks. Physics and Chemistry of the Earth, 29, 725–737.

    Article  Google Scholar 

  21. Jacob, D., & Bülow, K. (2005). Regionale Klimasimulationen zur Untersuchung der Niederschlagsverhältnisse in heutigen und zukünftigen Klimaten. In F. Wechsung, A. Becker, & P. Gräfe (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet (pp. 89–95). Berlin: Weißenseeverlag.

    Google Scholar 

  22. Ji, Z.-G. (2008). Hydrodynamics and water quality: modeling rivers, lakes and estuaries. Hoboken: Wiley-Interscience.

    Google Scholar 

  23. Krysanova, V., Meiner, A., Roosaare, J., & Vasilyev, A. (1989). Simulation modelling of the coastal waters pollution from agricultural watersheds. Ecological Modelling, 49, 7–29.

    Article  CAS  Google Scholar 

  24. Krysanova, V., Wechsung, F., Arnold, J., Srinivasan, R., & Williams, J. (2000). SWIM (Soil and Water Integrated Model): user manual. Potsdam: PIK. Report No. 69.

    Google Scholar 

  25. Legates, D. R., & McCabe, G. J. (1999). Evaluation the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233–241.

    Article  Google Scholar 

  26. Lindenschmidt, K.-E. (2005). River water quality modelling for river basin and water resources management with a focus on the Saale River, Germany. Habilitation thesis, Brandenburg University of Technology, Cottbus.

  27. LUFA (Landwirtschaftliche Untersuchungs- und Forschungsanstalt des Landes Sachsen-Anhalt) (1999). Grundlagen der Düngebedarfsermittlung für eine gute fachliche Praxis beim Düngen. Available from: http://www.sachsen-anhalt.de/index.php?id=38309.

  28. McElroy, A. D., Chiu, S. Y., Nebgen, J. W., Aleti, A., & Bennett, F. W. (1976). Loading Functions for assessment of water pollution from nonpoint sources. EPA 600/2-76-151. Springfield: National Technical Information Service.

    Google Scholar 

  29. Migliaccio, K. W., Chaubey, I., & Haggard, B. E. (2007). Evaluation of landscape and instream modeling to predict watershed nutrient yields. Environmental Modelling & Software, 22, 987–999.

    Article  Google Scholar 

  30. Mischke, U., Behrendt, H., Köhler, J., & Opitz, D. (2005). Überarbeiteter Endbericht zum LAWA-Vorhaben: Entwicklung eines Bewertungsverfahrens für Fließgewässer mittels Phytoplankton zur Umsetzung der EU-Wasserrahmenrichtlinie. Berlin: Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB).

    Google Scholar 

  31. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

    Google Scholar 

  32. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I: a discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  33. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and Water Assessment Tool theoretical documentation: version 2000. Report TR-191. Temple: TWRI.

    Google Scholar 

  34. Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R., & King, K. W. (2002). Soil and Water Assessment Tool user’s manual: version 2000. Report TR-192. Temple: TWRI.

    Google Scholar 

  35. Nixdorf, B., Mischke, U., & Behrendt, H. (2002). Phytoplankton/Potamoplankton—wie geeignet ist dieser Merkmalskomplex für die ökologische Bewertung von Flüssen? In R. Deneke & B. Nixdorf (Eds.), Implementierung der EU-Wasserrahmenrichtlinie in Deutschland: Ausgewählte Bewertungsmethoden und Defizite. BTUC-AR 5/2002 (pp. 39–52). Cottbus: Eigenverlag der BTU Cottbus.

    Google Scholar 

  36. Parajuli, P. B., Nelson, N. O., Frees, L. D., & Mankin, K. R. (2009). Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas. Hydrological Processes, 23, 748–763.

    Article  CAS  Google Scholar 

  37. Refsgaard, J. C., Thorsen, M., Jensen, J. B., Kleeschulte, S., & Hansen, S. (1999). Large scale modelling of groundwater contamination from nitrate leaching. Journal of Hydrology, 221(3–4), 117–140.

    Article  CAS  Google Scholar 

  38. Reimann, G., & Seiert, J. (2001). Das Einzugsgebiet der Saale vor dem Hintergrund der geplanten Wasserrahmenrichtlinie der EU. In M. Rode, K. Henle, & A. Schellenberger (Eds.), Erhalt und Regenerierung der Flußlandschaft Saale (pp. 11–20). Halle: Deutsche Akademie der Naturforscher Leopoldina.

    Google Scholar 

  39. Reimer, E., Soboudi, S., Mikusky, E., & Langer, I. (2005). Klimaprognose der Temperatur, der potenziellen Verdunstung und des Niederschlages mit NEURO-FUZZY-Modellen. In F. Wechsung, A. Becker, & P. Gräfe (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet (pp. 96–109). Berlin: Weißenseeverlag.

    Google Scholar 

  40. Rode, M., Thiel, E., Franko, U., Wenk, G., & Hesser, F. (2009). Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in Central Germany. Science of the Total Environment, 407, 3459–3472.

    Article  CAS  Google Scholar 

  41. Scharfe, M., Callies, U., Blöcker, G., Petersen, W., & Schroeder, F. (2009). A simple Lagrangian model to simulate temporal variability of algae in the Elbe River. Ecological Modelling, 220, 2173–2186.

    Article  CAS  Google Scholar 

  42. Scheffer, F., & Schachtschabel, P. (2002). Lehrbuch der Bodenkunde. Heidelberg: Spektrum Akademischer.

    Google Scholar 

  43. Schröder, A., & Matthies, M. (2002). Ammonium in Fließgewässern des Saale-Einzugsgebietes: Vergleich von Messwerten und Modellrechnungen in GREAT-ER. UWSF–Z Umweltchem Ökotox, 14(1), 37–44.

    Article  Google Scholar 

  44. Schwoerbel, J. (1999). Einführung in die Limnologie. Stuttgart: Gustav Fischer.

    Google Scholar 

  45. Singh, J., Knapp, H. V., & Demissie, M. (2004). Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. Illinois State Water Survey contract report 2004-8. Available from: http://www.isws.illinois.edu/pubdoc/CR/ISWSCR2004-08.pdf.

  46. Stefan, H. G., & Preud’homme, R. G. (1993). Stream temperature estimation from air temperature. Water Resources Bulletin, 29(1), 27–45.

    Article  Google Scholar 

  47. Theile, K. (2001). Gewässergüte der Saale–Vergangenheits- und Zukunftsaspekte. In M. Rode, K. Henle, & A. Schellenberger (Eds.), Erhalt und Regenerierung der Flußlandschaft Saale (pp. 117–129). Halle: Deutsche Akademie der Naturforscher Leopoldina.

    Google Scholar 

  48. Thorsen, M., Feyen, J., & Styczen, M. (1996). Agrochemical modelling. In M. B. Abbott & J. C. Refsgaard (Eds.), Distributed hydrological modelling (pp. 121–141). Dordrecht: Kluwer Academic.

    Google Scholar 

  49. TLL (Thüringer Landesanstalt für Landwirtschaft) (2007). Düngung in Thüringen 2007 nach “Guter fachlicher Praxis”. Schriftenreihe Landwirtschaft und Landschaftspflege in Thüringen, Heft 7/2007, available from: http://www.tll.de/ainfo/pdf/dung0108.pdf.

  50. TMLNU (Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt) (2009). Gemeinsam KLIMAbewusst handeln: Thüringer Klima- und Anpassungsprogramm. Available from: http://www.thueringen.de/de/publikationen/pic/pubdownload1016.pdf.

  51. van Griensven, A. (2002). Developments towards integrated water quality modelling for river basins. Ph.D. thesis, Vrije Universiteit, Brussel.

  52. van Griensven, A., & Bauwens, W. (2005). Application and evaluation of ESWAT on the Dender basin and the Wister lake basin. Hydrological Processes, 19(3), 827–838.

    Article  Google Scholar 

  53. Viroux, L. (1997). Zooplankton development in two large lowland rivers, the Moselle (France) and the Meuse (Belgium), in 1993. Journal of Plankton Research, 19(11), 1743–1762.

    Article  Google Scholar 

  54. Voß, A. (2007). Untersuchung und Modellierung der Stickstoff- und Phosphorumsatz- und Transportprozesse in mesoskaligen Einzugsgebieten des Tieflandes am Beispiel von Nuthe, Hammerfließ und Stepenitz. Ph.D. thesis, Potsdam University, Potsdam.

  55. Wagenschein, D., & Rode, M. (2008). Modelling the impact of river morphology on nitrogen retention—a case study of the Weisse Elster River (Germany). Ecological Modelling, 211, 224–232.

    Article  Google Scholar 

  56. Wechsung, F., Becker, A., & Gräfe, P. (Eds.). (2005). Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet: Konzepte für die nachhaltige Entwicklung einer Flusslandschaft. Band 6. Berlin: Weißenseeverlag.

    Google Scholar 

  57. Werner, A. (1997). Landwirtschaftlich genutzte Böden als Quellen und Senken bei geochemischen Prozessen. In J. Matschullat, H. J. Tobschall, & H.-J. Voigt (Eds.), Geochemie und Umwelt: Relevante Prozesse in Atmo-, Pedo- und Hydrosphäre. Berlin: Springer.

    Google Scholar 

  58. Werner, W., & Wodsack, H. P. (1994). Stickstoff- und Phosphoreintrag in die Fließgewässer Deutschlands unter besonderer Berücksichtigung des Eintragsgeschehens im Lockersteinbereich der ehemaligen DDR. Agrarspectrum 22. Frankfurt: DLG.

    Google Scholar 

  59. Williams, J. R., & Hann, R. W. (1978). Optimal operation of large agricultural watersheds with water quality constraints. Technical report no. 96, Texas Water Resources Institute.

  60. Ziemann, H. (2001). Auswirkungen der Abwasserlastsenkung durch den Neubau der Kläranlage Arnstadt auf die Gewässergüte der Gera (Thüringen). KA-Wasserwirtschaft, Abwasser, Abfall, 48(4), 520–526.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Hesse.

Appendix

Appendix

 

Table 5 Ammonium cycle in soil—mathematical descriptions derived from Neitsch et al. [33] and Voß [54] to simulate ammonium processes in soil
Table 6 Ammonium cycle in soil—list of abbreviations
Table 7 In-stream processes—mathematical descriptions derived from Neitsch et al. [33] to simulate in-stream processes in the river network
Table 8 In-stream processes—list of abbreviations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, C., Krysanova, V. & Voß, A. Implementing In-Stream Nutrient Processes in Large-Scale Landscape Modeling for the Impact Assessment on Water Quality. Environ Model Assess 17, 589–611 (2012). https://doi.org/10.1007/s10666-012-9320-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9320-8

Keywords

Navigation