Skip to main content

Advertisement

Log in

Multi-stand Forest Management under a Climatic Risk: Do Time and Risk Preferences Matter?

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

We propose a stochastic dynamic programming framework to model the management of a multi-stand forest under climate risk (strong wind occurrence). The preferences of the forest-owner are specified by a non-expected utility in order to separately analyze intertemporal substitution and risk aversion effects. A numerical method is developed to characterize the optimal forest management policies and the optimal consumption-saving strategy. The stochastic dynamic programming framework is applied to a non-industrial private forest-owner located in North-East of France. We show that the optimal decisions both depend upon risk and time preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berck, P. (1979). The economics of timber: A renewable resource in the long-run. Bell Journal of Economics, 10, 447–462.

    Article  Google Scholar 

  2. Caulfield, J. (1988). A stochastic efficiency approach for determining the economic rotation of a forest stand. Forest Science, 34, 441–457.

    Google Scholar 

  3. Chavas, J.-P. (2004). On impatience, economic growth and the environmental kuznets curve: A dynamic analysis of resource management. Environmental and Resource Economics, 28(2), 123–152.

    Article  Google Scholar 

  4. Dhote, J. (2000). Composition, structure et résistance des peuplements. In J. C. Bergonzini & O. Laroussinie (Eds.), Les écosystèmes forestiers dans la tempête. Paris: ECOFOR-MAP.

  5. Epstein, L., & Zin, S. (1989). Substitution, risk aversion and the temporal behavior of consumption and asset returns: A theoretical framework. Econometrica, 57, 937–969.

    Article  Google Scholar 

  6. Epstein, L., & Zin, S. (1991). Substitution, risk aversion and the temporal behavior of consumption and asset returns: An empirical analysis. Journal of Political Economy, 99, 263–286.

    Article  Google Scholar 

  7. Gong, P., & Löfgren, K.-G. (2005). Impact of risk aversion on optimal rotation age. Umea: Scandinavian WP no666, Swedish University of Agricultural Sciences.

    Google Scholar 

  8. Guo, B. (1994). Recherche d’une sylviculture optimale à long terme pour les peuplements forestiers équiennes. Ph.D. dissertation. Nancy: ENGREF.

  9. Haight, R., Smith, W., & Starka, T. (1995). Hurricanes and the economics of loblolly pine plantations. Forest Science, 41(4), 675–688.

    Google Scholar 

  10. Hall, R. (1988). Intertemporal substitution in consumption. Journal of Political Economy, 96, 338–357.

    Google Scholar 

  11. Howitt, R., Reynaud, A., Msangi, S., & Knapp, K. (2005). Estimating intertemporal preferences for natural resource allocation. American Journal of Agricultural Economics, 87(4), 969–983.

    Article  Google Scholar 

  12. Johansson, P., & Löfgren, K. (1985). The economics of forestry and natural resources. Oxford, UK: Blackwell.

    Google Scholar 

  13. Judd, K. (1998). Numerical methods in economics. Cambridge: M.I.T Press.

    Google Scholar 

  14. Kangas, J. (1994). Incorporating risk attitude into comparison of reforestation alternatives. Scandinavian Journal of Forest Research, 9, 297–304.

    Article  Google Scholar 

  15. Knapp, K., & Olson, L. (1995). Dynamic resource management: Intertemporal substitution and risk aversion. American Journal of Agricultural Economics, 78, 1004–1014.

    Article  Google Scholar 

  16. Koskela, E., & Ollikainen, M. (1999). Timber supply, amenity values and biological uncertainty. Journal of Forest Economics, 5(2), 285–304.

    Google Scholar 

  17. Lyon, K., & Sedjo, R. (1983). An optimal control theory model to estimate the regional long run timber supply. Forest Science, 29, 798–812.

    Google Scholar 

  18. Mitra, T., & Wan, H. (1985). Some theoretical results on the economics of forestry. Review of Economic Studies, 52, 263–282.

    Article  Google Scholar 

  19. Normandin, M., & Saint-Amour, P. (1998). Substitution, risk aversion, taste shocks and equity premia. Journal of Applied Econometrics, 13, 265–281.

    Article  Google Scholar 

  20. Peltola, J., & Knapp, K. (2001). Recursive preferences in forest management. Forest Science, 47(4), 455–465.

    Google Scholar 

  21. Picard, O., Robert, N., & Toppan, E. (2002). Les systèmes d’assurance en forêt et les progrès possibles. Paris: Fédération Nationale des Syndicats de Propriétaires Forestiers Sylviculteurs, IDF.

    Google Scholar 

  22. Pukkala, T., & Kangas, J. (1996). A method for integrating risk and attitude toward risk into forest planning. Forest Science, 42(2), 198–205.

    Google Scholar 

  23. Reed, W. (1984). The effects of the risk of fire on the optimal rotation of a forest. Journal of Environmental Economics and Management, 11, 180–190.

    Article  Google Scholar 

  24. Salo, S., & Tahvonen, O. (2002). On the optimality of a normal forest with multiple land classes. Forest Science, 48, 530–542.

    Google Scholar 

  25. Salo, S., & Tahvonen, O. (2003). On the economics of forest vintages. Journal of Economic Dynamics and Control, 27, 1411–1435.

    Article  Google Scholar 

  26. Salo, S., & Tahvonen, O. (2004). Renewable resources with endogenous age classes and allocation of land. American Journal of Agricultural Economics, 86(2), 513–530.

    Article  Google Scholar 

  27. Samuelson, P. (1976). Economics of forestry in a evolving society. Economic Inquiry, 14, 466–492.

    Article  Google Scholar 

  28. Schelhaas, M.-J., Nabuurs, G.-J., & Schuck, A. (2003). Natural disturbances in the european forests in the 19th and 20th centuries. Global Change Biology, 9, 1620–1633.

    Article  Google Scholar 

  29. Sedjo, R., & Lyon, K. (1990). The long-term adequacy of world timber supply, report. Washington, DC; Resources for the Future RFF.

  30. Stainback, G., & Alavalapati, J. (2004). Modeling catastrophic risk in economic analysis of forest carbon seques tration. Natural Resource Modeling, 17(3), 299–317.

    Google Scholar 

  31. Stollery, K. (2005). Climate change and optimal rotation in a flammable forest. Natural Resource Modeling, 18(1), 91–112.

    Google Scholar 

  32. Tahvonen, O. (1998). Bequests, credit rationing and in situ values in the faustmann-pressler-ohlin forestry model. Scandinavian Journal of Economics, 100(4), 781–800.

    Article  Google Scholar 

  33. Tahvonen, O. (2004). Optimal harvesting of forest age classes: A survey of some recent results. Mathematical Population Studies, 11, 205–232.

    Article  Google Scholar 

  34. Tahvonen, O., & Salo, S. (1999). Optimal forest rotation with in situ preferences. Journal of Environmental Economics and Management, 37, 106–128.

    Article  Google Scholar 

  35. Taylor, R., & Forston, J. (1991). Optimum plantation planting density and rotation age based on financial risk and return. Forest Science, 37(3), 886–902.

    Google Scholar 

  36. Uusivuori, J., & Kuuluvainen, J. (2005). The harvesting decisions when a standing value forest with multiple age-classes has value. American Journal of Agricultural Economics, 87(1), 61–76.

    Article  Google Scholar 

  37. Valsta, L. (1992). A scenario approach to stochastic anticipatory optimization in stand management. Forest Science, 38, 430–447.

    Google Scholar 

  38. Vanniére, B. (1984). Tables de production pour les forêts françaises Nancy: E.N.G.R.E.F Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Reynaud.

Additional information

The authors would like to thank participants at the international conference on Economics of Sustainable Forest Management in Toronto, at the PARIS 1 seminar on Environmental and Natural Resource Economics, at the 2004 Applied Microeconomics Conference in Lille and at the 13th annual conference of the European Association of Environmental and Resource Economists at Budapest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couture, S., Reynaud, A. Multi-stand Forest Management under a Climatic Risk: Do Time and Risk Preferences Matter?. Environ Model Assess 13, 181–193 (2008). https://doi.org/10.1007/s10666-007-9121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-007-9121-7

Keywords

JEL

Navigation