Skip to main content

Advertisement

Log in

Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to examine associations between asthma morbidity and local ambient air pollution in an area with relatively low levels of pollution, we conducted a time-series analysis of asthma hospital admissions and fine particulate matter pollution (PM2.5) in and around Jackson, MS, for the period 2003 to 2011. Daily patient-level records were obtained from the Mississippi State Department of Health (MSDH) Asthma Surveillance System. Patient geolocations were aggregated into a grid with 0.1° × 0.1° resolution within the Jackson Metropolitan Statistical Area. Daily PM2.5 concentrations were estimated via machine-learning algorithms with remotely sensed aerosol optical depth and other associated parameters as inputs. Controlling for long-term temporal trends and meteorology, we estimated a 7.2% (95% confidence interval 1.7–13.1%) increase in daily all-age asthma emergency room admissions per 10 μg/m3 increase in the 3-day average of PM2.5 levels (current day and two prior days). Stratified analyses reveal significant associations between asthma and 3-day average PM2.5 for males and blacks. Our results contribute to the current epidemiologic evidence on the association between acute ambient air pollution exposure and asthma morbidity, even in an area characterized by relatively good air quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alhanti, B. A., Chang, H. H., Winquist, A., Mulholland, J., Darrow, L., & Sarnat, S. E. (2016). Ambient air pollution and emergency department visits for asthma: a multi-city assessment of effect modification by age. Journal of Exposure Science & Environmental Epidemiology, 26, 180–188.

    Article  CAS  Google Scholar 

  • Bell, M. L., Samet, J. M., & Dominici, F. (2004). Time-series studies of particulate matter. Annual Review of Public Health, 25, 247–280.

  • Blackwell, D. L., Lucas, J. W., & Clarke, T. C. (2014). Summary health statistics for U.S. adults: national health interview survey, 2012. Vital and Health Statistics, 206, 1–161.

    Google Scholar 

  • Chang, H. H., Fuentes, M., & Frey, H. C. (2012). Time series analysis of personal exposure to ambient PM2.5 and mortality using an exposure simulator. Journal of Exposure Science & Environmental Epidemiology, 22, 483–488.

    Article  Google Scholar 

  • Cheng, M. H., Chen, C. C., Chiu, H. F., & Yang, C. Y. (2014). Fine particulate air pollution and hospital admissions for asthma: a case-crossover study in Taipei. Journal of Toxicology and Environmental Health. Part A, 77, 1075–1083.

    Article  CAS  Google Scholar 

  • Dai, L., Zanobetti, A., Koutrakis, P., & Schwartz, J. D. (2014). Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis. Environmental Health Perspectives, 122, 837–842.

    Article  CAS  Google Scholar 

  • Delfino, R. J., Brummel, S., Wu, J., Stern, H., Ostro, B., Lipsett, M., Winer, A., Street, D. H., Zhang, L., Tjoa, T., & Gillen, D. L. (2008). The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, 66, 189–197.

    Article  Google Scholar 

  • Dionisio, K. L., Chang, H. H., & Baxter, L. K. (2016). A simulation study to quantify attenuation and bias of health risk estimates due to exposure measurement in bipollutant epidemiologic model. Environmental Health, 15, 114.

    Article  Google Scholar 

  • Dominici, F., McDermott, A., Zeger, S. L., & Samet, J. M. (2003). National maps of the effects of particulate matter on mortality: exploring geographical variation. Environmental Health Perspectives, 111, 39–44.

    Article  Google Scholar 

  • Elliott, C. T., Henderson, S. B., & Wan, V. (2013). Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires. Environmental Health, 12, 11.

    Article  Google Scholar 

  • Engel-Cox, J. A., Hoff, R. M., & Haymet, A. (2004). Recommendations on the use of satellite remote-sensing data for urban air quality. Journal of the Air & Waste Management Association (1995), 54, 1360–1371.

    Article  Google Scholar 

  • ESRI. (2017). Business analyst data & reports. http://www.esri.com/software/businessanalyst/data-and-reports. Accessed 20 July 2017.

  • Faruque, F. S., Li, H., Williams, W. B., Waller, L. A., Brackin, B. T., Zhang, L., & Finley, R. W. (2014). GeoMedStat: an integrated spatial surveillance system to track air pollution and associated healthcare events. Geospatial Health, 8, 631–646.

    Article  Google Scholar 

  • Franklin, M., Zeka, A., & Schwartz, J. (2007). Association between PM2.5 and all-cause and specific-cause mortality in 27 US communities. Journal of Exposure Science & Environmental Epidemiology, 17, 279–287.

    Article  CAS  Google Scholar 

  • Glad, J. A., Brink, L. L., Talbott, E. O., Lee, P. C., Xu, X., Saul, M., & Rager, J. (2012). The relationship of ambient ozone and PM2.5 levels and asthma emergency department visits: possible influence of gender and ethnicity. Archives of Environmental & Occupational Health, 67, 103–108.

    Article  CAS  Google Scholar 

  • Gleason, J. A., Bielory, L., & Fagliano, J. A. (2014). Associations between ozone, PM2.5, and four pollen types on emergency department pediatric asthma events during the warm season in New Jersey: a case-crossover study. Environmental Research, 132, 421–429.

    Article  CAS  Google Scholar 

  • Grineski, S. E., Staniswalis, J. G., Peng, Y., & Atkinson-Palombo, C. (2010). Children’s asthma hospitalizations and relative risk due to nitrogen dioxide (NO2): effect modification by race, ethnicity, and insurance status. Environmental Research, 110, 178–188.

    Article  CAS  Google Scholar 

  • Hajat, S., Haines, A., Goubet, S. A., Atkinson, R. W., & Anderson, H. R. (1999). Association of air pollution with daily GP consultations for asthma and other lower respiratory conditions in London. Thorax, 54, 587–605.

    Article  Google Scholar 

  • Halonen, J. I., Lanki, T., Yli-Tuomi, T., Kulmala, M., Tiittanen, P., & Pekkanen, J. (2008). Urban air pollution and asthma and COPD hospital emergency room visits. Thorax, 63, 635–641.

    Article  CAS  Google Scholar 

  • Hoff, R. M., & Christopher, S. A. (2009). Remote sensing of particulate pollution from space: have we reached the promised land? Journal of the Air & Waste Management Association (1995), 59(6), 645–675.

    Article  CAS  Google Scholar 

  • Hu, Z. (2009). Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease. International Journal of Health Geographics, 8, 27.

    Article  Google Scholar 

  • Ivy, D., Mulholland, J. A., & Russell, A. G. (2008). Development of ambient air quality population-weighted metrics for use in time-series health studies. Journal of the Air & Waste Management Association (1995), 58, 711–720.

    Article  CAS  Google Scholar 

  • Janssen, N. A. H., Lanki, T., Hoek, G., Vallius, M., de Hartog, J. J., Grieken, R. V., Pekkanen, J., & Brunekreef, B. (2005). Associations between ambient, personal, and indoor exposure to fine particulate matter constituents in Dutch and Finnish panels of cardiovascular patients. Occupational and Environmental Medicine, 62, 868–877.

    Article  CAS  Google Scholar 

  • Karagulian, F., Belis, C. A., Dora, C. F. C., Pruss-Ustun, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): a systemic review of local sources contributions at global level. Atmospheric Environment, 120, 475–483.

    Article  CAS  Google Scholar 

  • Keller, J. P., Chang, H. H., Strickland, M. J., & Szpiro, A. A. (2016). Measurement error correction for predicted spatiotemporal air pollution exposures. Epidemiology., 28, 338–345. https://doi.org/10.1097/EDE.0000000000000623.

    Article  Google Scholar 

  • Kloog, I., Melly, S. J., Ridgway, W. L., Coull, B. A., & Schwartz, J. (2012). Using new satellite based exposure methods to study the association between pregnancy PM 2.5 exposure, premature birth and birth weight in Massachusetts. Environmental Health, 11(1), 40.

    Article  Google Scholar 

  • Krall, J. R., Anderson, G. B., Dominici, F., Bell, M. L., & Peng, R. D. (2013). Short-term exposure to particulate matter constituents and mortality in a national study of U.S. urban communities. Environmental Health Perspectives, 121, 1148–1153.

    Article  Google Scholar 

  • Lary, D. J., Faruque, F. S., Malakar, N., Moore, A., Roscoe, B., Adams, Z. L., & Eggelston, Y. (2014a). Estimating the global abundance of ground level presence of particulate matter (PM2.5). Geospatial Health, 8, 611–630.

    Article  Google Scholar 

  • Lary, D. J., Woolf, S., Faruque, F., & Le Page, J. P. (2014b). Holistics 3.0 for health. ISPRS International Journal of Geo-Information, 3, 1023–1038.

    Article  Google Scholar 

  • Lary, D., Lary, T., & Sattler, B. (2015). Using machine learning to estimate global PM2.5 for environmental health studies. Environmental Health Insights, 9, 41.

    CAS  Google Scholar 

  • Lin, M., Chen, Y., Burnett, R. T., Villeneuve, P. J., & Krewski, D. (2002). The influence of ambient coarse particulate matter on asthma hospitalization in children: case-crossover and time-series analyses. Environmental Health Perspectives, 110, 575–581.

    Article  Google Scholar 

  • Liu, Y., Paciorek, C. J., & Koutrakis, P. (2009). Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 117(6), 886–892.

    Article  Google Scholar 

  • Makar, M., Antonelli, J., Di, Q., Cutler, D., Schwartz, J., & Dominici, F. (2017). Estimating the causal effect of low levels of fine particulate matter on hospitalization. Epidemiology, 28(5), 627–634.

    Article  Google Scholar 

  • Nachman, K. E., & Parker, J. D. (2012). Exposures to fine particulate air pollution and respiratory outcomes in adults using two national datasets: a cross-sectional study. Environmental Health, 11(25), 2012.

    Google Scholar 

  • Natunen, A., Arola, A., Mielonen, T., Huttunen, J., Komppula, M., & Lehtinen, K. E. (2010). A multi-year comparison of PM2.5 and AOD for the Helsinki region. Boreal Environment Research, 15, 544–552.

    CAS  Google Scholar 

  • O’Lenick, C. R., Winquist, A., Chang, H. H., Kramer, M. R., Mulholland, J. A., Grundstein, A., & Sarnat, S. E. (2017). Ozone and childhood respiratory disease in three US cities: evaluation of effect measure modification by neighborhood socioeconomic status using a Bayesian hierarchical approach. Environmental Health, 16, 36.

    Article  Google Scholar 

  • Paciorek, C. J., & Liu, Y. (2012). Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Research Report. Health Effects Institute, 167, 5–83 discussion 85-91.

    CAS  Google Scholar 

  • Peng, R. D., & Bell, M. L. (2010). Spatial misalignment in time series studies of air pollution and health data. Biostatistics, 11(4), 720–740.

    Article  Google Scholar 

  • Peng, R. D., Dominici, F., & Louis, T. A. (2006). Model choice in time series studies of air pollution and mortality (with discussion). Journal of the Royal Statistical Society. Series C, Applied Statistics, 169, 179–203.

    Article  Google Scholar 

  • Peng, R. D., Chang, H. H., Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., & Dominici, F. (2008). Coarse particulate matter air pollution and hospital admissions for cardiovascular and respiratory diseases among Medicare patients. JAMA, 299, 2172–2179.

    Article  CAS  Google Scholar 

  • Qiu, H., Yu, I. T., Tian, L., Wang, X., Tse, L. A., Tam, W., & Wong, T. W. (2014). Effects of coarse particulate matter on emergency hospital admissions for respiratory diseases: a time-series analysis in Hong Kong. Environmental Health Perspectives, 120, 572–576.

    Article  Google Scholar 

  • Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. C. (2000). Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. The New England Journal of Medicine, 343, 1742–1749.

    Article  CAS  Google Scholar 

  • Schaap, M., Apituley, A., Timmermans, R., Koelemeijer, R., & Leeuw, G. D. (2009). Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmospheric Chemistry and Physics, 9, 909–925.

    Article  CAS  Google Scholar 

  • Sheppard, L. (2003). Insights on bias and information in group-level studies. Biostatistics, 4, 265–278.

    Article  Google Scholar 

  • Sheppard, L., Levy, D., Norris, G., Larson, T. V., & Koenig, J. Q. (1999). Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987-1994. Epidemiology, 10, 23–30.

    Article  CAS  Google Scholar 

  • Son, J. Y., Lee, J. T., Park, Y. H., & Bell, M. L. (2013). Short-term effects of air pollution on hospital admissions in Korea. Epidemiology, 24, 545–554.

    Article  Google Scholar 

  • Strickland, M. J., Darrow, L. A., Klein, M., Flanders, W. D., Sarnat, J. A., Waller, L. A., Sarnat, S. E., Mulholland, J. A., & Tolbert, P. E. (2010). Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. American Journal of Respiratory and Critical Care Medicine, 182(3), 307–316.

    Article  Google Scholar 

  • Strickland, M. J., Klein, M., Flanders, W. D., Chang, H. H., Mulholland, J. A., Tolbert, P. E., & Darrow, L. A. (2014). Modification of the effect of ambient air pollution on pediatric asthma emergency visits: susceptible subpopulations. Epidemiology, 25, 843–850.

    Article  Google Scholar 

  • Strickland, M. J., Hao, H., Hu, X., Chang, H. H., Darrow, L. A., & Liu, Y. (2016). Pediatric emergency visits and short-term changes in PM2.5 concentrations in the US State of Georgia. Environmental Health Perspectives, 124(5), 690–696.

    Article  CAS  Google Scholar 

  • Tecer, L. H., Alagha, O., Karaca, F., Tuncel, G., & Eldes, N. (2008). Particulate matter (PM2.5, PM10-2.5, and PM10) and children's hospital admissions for asthma and respiratory diseases: a bidirectional case-crossover study. Journal of Toxicology and Environmental Health. Part A, 71, 512–520.

    Article  CAS  Google Scholar 

  • US Centers for Disease Control and Prevention. (2009). The International Classification of Diseases, Ninth Revision, National Center for Health Statistics. https://www.cdc.gov/nchs/icd/icd9cm.htm.

  • van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environmental Health Perspectives, 118, 847–855.

    Article  Google Scholar 

  • Weber, S. A., Engel-Cox, J. A., Hoff, R. M., Prados, A. I., & Zhang, H. (2010). An improved method for estimating surface fine particle concentrations using seasonally adjusted satellite aerosol optical depth. Journal of the Air & Waste Management Association (1995), 60, 574–585.

    Article  CAS  Google Scholar 

  • Yin, P., He, G., Fan, M., Chiu, K. Y., Fan, M., Liu, C., Xue, A., Liu, T., Pan, Y., Mu, Q., & Zhou, M. (2017). Particulate air pollution and mortality in 38 of China’s largest cities: time series analysis. BMJ, 14, 356.

    Google Scholar 

  • Zhang, H., Hoff, R. M., & Engel-Cox, J. A. (2009). The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: a geographical comparison by US Environmental Protection Agency regions. Journal of the Air & Waste Management Association (1995), 59, 1358–1369.

    Article  Google Scholar 

  • Zheng, X., Ding, H., Jiang, L., Chen, S., Zheng, J., Qiu, M., Zhou, Y., Chen, Q., & Guan, W. (2015). Association between air pollutants and asthma emergency room visits and hospital admissions in time series studies: a systematic review and meta-analysis. PLoS One, 10, e0138146.

    Article  Google Scholar 

Download references

Acknowledgements

Collection of asthma hospital discharge data used in this research was supported by Cooperative Agreement Number 5U59EH000208 from the Centers for Disease Control and Prevention (CDC), National Center for Environmental Health, Air Pollution and Respiratory Health Branch.

The contents of the article are solely responsibility of the authors and do not necessarily represent the official views of the NIH, the CDC or the Mississippi State Department of Health.

Funding

Support for this research was provided by a grant from the National Institute of Environmental Health Sciences of the National Institutes of Health (NIH) under award number R21ES019713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlay S. Faruque.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Geospatial Technology in Environmental Health Applications

Electronic supplementary material

ESM 1

(DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H.H., Pan, A., Lary, D.J. et al. Time-series analysis of satellite-derived fine particulate matter pollution and asthma morbidity in Jackson, MS. Environ Monit Assess 191 (Suppl 2), 280 (2019). https://doi.org/10.1007/s10661-019-7421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7421-4

Keywords

Navigation