Skip to main content

Advertisement

Log in

Heatwaves and hospitalizations due to hyperthermia in defined climate regions in the conterminous USA

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Heatwaves are one of the deadliest natural disasters that occur annually with thousands of people seeking medical attention. The spatio-temporal synchronization between peaks in disease manifestation and high temperature provides important insights into the seasonal timing of the heatwave and the response it may cause with respect to emergence, severity, and duration. The objectives of this study are to examine the association between hospitalizations due to heat stroke in older adults and heat in the United States (US) and explore synchronization with respect to heatwave sequence, time of arrival, and regional climate. Three large data sets were utilized: daily hospitalization records of the US elderly between 1991 and 2006, annual demographic summaries on Medicare beneficiaries maintained by the Centers for Medicare and Medicaid Services (CMS), and nationwide daily meteorological observations. We modeled seasonal fluctuations in health outcomes, such as the timing and intensity of the seasonal peak in hospitalizations using refined harmonic GLM for eight climatically similar regions. During the 16-year study period, there were 40,019 heat-related hospitalizations (HRH) in the conterminous  US. The rates of HRH varied substantially across eight climatic regions: with the highest rate of 7.05 cases per million residents observed in areas with temperate arid summers and winters (TaTa) and the lowest rate of 0.67—in areas with cold moderately dry summers and arid winters (CdCa), where summer temperatures are about  18.3 °C and 12.1 °C, respectively. We detected 400 heatwaves defined as any day when the night time temperature is above its 90th percentile for the current and previous nights. The first seasonal heatwave in a season resulted in 4274 hospitalizations over 342 heatwave-days: 34.3% of 12,442 hospitalizations occurred in 26% of 1308 heatwave-days. The relative risks of increased HRH associated with the first and second heatwaves were 10.4 (95%CI: 8.5; 12.3) and 11.4 (95%CI: 9.6; 13.3), respectively, indicating the disproportional effects of early heatwave arrivals. The seasonal spike in heat stroke hospitalizations in regions with relatively similar annual temperatures, e.g. in areas with temperate moderately dry summers and winters (TdTa: 12.8 °C) and (TaTa: 11.1 °C) ranged between 4.5 (95%CI: 3.3; 5.5) and 11.0 (95%CI: 8.2; 14.9) cases per million residents, respectively, indicating substantial regional differences. The differences in heat-related hospitalizations and response to heatwaves are substantial among older adults residing in different climate regions of the conterminous US. The disproportionally high response to the early seasonal heatwave deserves special attention, especially in the context of prevention and decision support frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, G. B., & Bell, M. L. (2011). Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environmental Health Perspectives, 119(2), 210–218. https://doi.org/10.1289/ehp.1002313.

    Article  Google Scholar 

  • Arias, E. (2015). United States life tables, 2011. National Vital Statistics Reports, 64(11), 1–63.

    Google Scholar 

  • Astrom, D. O., Forsberg, B., & Rocklov, J. (2011). Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas, 69(2), 99–105. https://doi.org/10.1016/j.maturitas.2011.03.008.

    Article  Google Scholar 

  • Aubrecht, C., Steinnocher, K., Köstl, M., Züger, J., & Loibl, W. (2013). Long-term spatio-temporal social vulnerability variation considering health-related climate change parameters particularly affecting elderly. Natural Hazards, 68(3), 1371–1384. https://doi.org/10.1007/s11069-012-0324-0.

    Article  Google Scholar 

  • Baccini, M., Biggeri, A., Accetta, G., Kosatsky, T., Katsouyanni, K., Analitis, A., Anderson, H. R., Bisanti, L., DʼIppoliti, D., Danova, J., Forsberg, B., Medina, S., Paldy, A., Rabczenko, D., Schindler, C., & Michelozzi, P. (2008). Heat effects on mortality in 15 European cities. Epidemiology, 19(5), 711–719. https://doi.org/10.1097/EDE.0b013e318176bfcd.

    Article  Google Scholar 

  • Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M., & Garcia-Herrera, R. (2011). The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332(6026), 220–224. https://doi.org/10.1126/science.1201224.

    Article  CAS  Google Scholar 

  • Basu, R. (2009). High ambient temperature and mortality: A review of epidemiologic studies from 2001 to 2008. Environmental Health, 8, 40. https://doi.org/10.1186/1476-069X-8-40.

    Article  Google Scholar 

  • Basu, R., & Samet, J. M. (2002). Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence. Epidemiologic Reviews, 24(2), 190–202.

    Article  Google Scholar 

  • Black, E., Blackburn, M., Harrison, G., Hoskins, B., & Methven, J. (2004). Factors contributing to the summer 2003 European heatwave. Weather, 59(8), 217–223. https://doi.org/10.1256/wea.74.04.

    Article  Google Scholar 

  • Chebana, F., Martel, B., Gosselin, P., Giroux, J.-X., & Ouarda, T. B. M. J. (2013). A general and flexible methodology to define thresholds for heat health watch and warning systems, applied to the province of Québec (Canada). International Journal of Biometeorology, 57(4), 631–644. https://doi.org/10.1007/s00484-012-0590-2.

    Article  Google Scholar 

  • Chui, K. K., Cohen, S. A., & Naumova, E. N. (2011a). Snowbirds and infection--new phenomena in pneumonia and influenza hospitalizations from winter migration of older adults: A spatiotemporal analysis. BMC Public Health, 11, 444. https://doi.org/10.1186/1471-2458-11-444.

    Article  Google Scholar 

  • Chui, K. K., Jagai, J. S., Griffiths, J. K., & Naumova, E. N. (2011b). Hospitalization of the elderly in the United States for nonspecific gastrointestinal diseases: A search for etiological clues. American Journal of Public Health, 101(11), 2082–2086. https://doi.org/10.2105/AJPH.2010.300096.

    Article  Google Scholar 

  • Chung, Y., Lim, Y. H., Honda, Y., Guo, Y. L., Hashizume, M., Bell, M. L., et al. (2015). Mortality related to extreme temperature for 15 cities in Northeast Asia. Epidemiology, 26(2), 255–262. https://doi.org/10.1097/EDE.0000000000000229.

    Article  Google Scholar 

  • Cohen, S. A., & Naumova, E. N. (2007). Population dynamics in the elderly: The need for age-adjustment in national BioSurveillance systems. In D. Zeng, I. Gotham, K. Komatsu, C. Lynch, M. Thurmond, D. Madigan, et al. (Eds.), Intelligence and security informatics: Biosurveillance: Second NSF workshop, BioSurveillance 2007, New Brunswick, NJ, USA, may 22, 2007. Proceedings (pp. 47–58). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Deschenes, O. (2014). Temperature, human health, and adaptation. Energy Economics, 46(0), 606–619. https://doi.org/10.1016/j.eneco.2013.10.013.

    Article  Google Scholar 

  • Deschênes, O., & Moretti, M. (2009). Extreme weather events, mortality, and migration. The Review of Economics and Statistics, 91(4), 659–681. https://doi.org/10.1162/rest.91.4.659.

    Article  Google Scholar 

  • D'Ippoliti, D., Michelozzi, P., Marino, C., de'Donato, F., Menne, B., Katsouyanni, K., Kirchmayer, U., Analitis, A., Medina-Ramón, M., Paldy, A., Atkinson, R., Kovats, S., Bisanti, L., Schneider, A., Lefranc, A., Iñiguez, C., & Perucci, C. A. (2010). The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project. Environmental Health, 9, 37. https://doi.org/10.1186/1476-069X-9-37.

    Article  Google Scholar 

  • Ebi, K. L., & Mills, D. (2013). Winter mortality in a warming climate: A reassessment. Wiley Interdisciplinary Reviews: Climate Change, 4(3), 203–212. https://doi.org/10.1093/aje/kwn266.

    Article  Google Scholar 

  • Gamble, J. L., Hurley, B. J., Schultz, P. A., Jaglom, W. S., Krishnan, N., & Harris, M. (2013). Climate change and older Americans: State of the science. Environmental Health Perspectives, 121(1), 15–22. https://doi.org/10.1289/ehp.1205223.

    Article  Google Scholar 

  • Gao, J., Sun, Y., Liu, Q., Zhou, M., Lu, Y., & Li, L. (2015). Impact of extreme high temperature on mortality and regional level definition of heat wave: A multi-city study in China. Science of the Total Environment, 505(Supplement C), 535–544. https://doi.org/10.1016/j.scitotenv.2014.10.028.

    Article  CAS  Google Scholar 

  • Goldie, J., Alexander, L., Lewis, S. C., Sherwood, S. C., & Bambrick, H. (2017). Changes in relative fit of human heat stress indices to cardiovascular, respiratory, and renal hospitalizations across five Australian urban populations. International Journal of Biometeorology, 62, 423–432. https://doi.org/10.1007/s00484-017-1451-9.

    Article  Google Scholar 

  • Hajat, S., O'Connor, M., & Kosatsky, T. (2010). Health effects of hot weather: From awareness of risk factors to effective health protection. Lancet, 375(9717), 856–863. https://doi.org/10.1016/S0140-6736(09)61711-6.

    Article  Google Scholar 

  • Jagai, J. S., Griffiths, J. K., Kirshen, P. K., Webb, P., & Naumova, E. N. (2012). Seasonal patterns of gastrointestinal illness and streamflow along the Ohio River. International Journal of Environmental Research and Public Health, 9(5), 1771–1790. https://doi.org/10.3390/ijerph9051771.

    Article  Google Scholar 

  • Johnson, D. P., Stanforth, A., Lulla, V., & Luber, G. E. (2012). Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Applied Geography, 35(1–2), 23–31. https://doi.org/10.1016/j.apgeog.2012.04.006.

    Article  Google Scholar 

  • Kalkstein, L. S., & Davis, R. E. (1989). Weather and human mortality: An evaluation of demographic and interregional responses in the United States. Annals of the Association of American Geographers, 79(1), 44–64. https://doi.org/10.1111/j.1467-8306.1989.tb00249.x.

    Article  Google Scholar 

  • Kalkstein, L. S., & Greene, J. S. (1997). An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change. Environmental Health Perspectives, 105(1), 84–93.

    Article  CAS  Google Scholar 

  • Kent, S. T., McClure, L. A., Zaitchik, B. F., Smith, T. T., & Gohlke, J. M. (2014). Heat waves and health outcomes in Alabama (USA): The importance of heat wave definition. Environmental Health Perspectives, 122(2), 151–158. https://doi.org/10.1289/ehp.1307262.

    Article  Google Scholar 

  • Kilbourne, E. M. (1999). The spectrum of illness during heat waves. American Journal of Preventive Medicine, 16(4), 359–360.

    Article  CAS  Google Scholar 

  • Lawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–233. https://doi.org/10.1175/bams-86-2-225.

    Article  Google Scholar 

  • Leone, M., D'Ippoliti, D., De Sario, M., Analitis, A., Menne, B., Katsouyanni, K., et al. (2013). A time series study on the effects of heat on mortality and evaluation of heterogeneity into European and eastern-southern Mediterranean cities: Results of EU CIRCE project. Environmental Health, 12, 55. https://doi.org/10.1186/1476-069X-12-55.

    Article  Google Scholar 

  • Li, M., Gu, S., Bi, P., Yang, J., & Liu, Q. (2015). Heat waves and morbidity: Current knowledge and further direction-a comprehensive literature review. International Journal of Environmental Research and Public Health, 12(5), 5256–5283. https://doi.org/10.3390/ijerph120505256.

    Article  Google Scholar 

  • Liss, A., Koch, M., & Naumova, E. N. (2014). Redefining climate regions in the United States of America using satellite remote sensing and machine learning for public health applications. Geospatial Health, 8(3), S647–S659. https://doi.org/10.4081/gh.2014.294.

    Article  Google Scholar 

  • Liss, A., Wu, R., Chui, K. K., & Naumova, E. N. (2017). Heat-related hospitalizations in older adults: An amplified effect of the first seasonal heatwave. Scientific Reports, 7, 39581. https://doi.org/10.1038/srep39581.

    Article  CAS  Google Scholar 

  • Luber, G. E., Sanchez, C. A., & Conklin, L. (2006). Heat-related deaths--United States, 1999-2003. MMWR: Morbidity and Mortality Weekly Report, 55(29), 796–798.

    Google Scholar 

  • McGregor, G.R., Bessemoulin, P., Ebi, K., & Menne, B. (eds) (2015). Heatwaves and health: guidance on warning-system development (WMO-No. 1142). Resource document. World meteorological organization and world health organization. Geneva, Switzerland. ISBN 978-92-63-11142-5 http://www.who.int/globalchange/publications/WMO_WHO_Heat_Health_Guidance_2015.pdf. Accessed 17 April 2019.

  • Miron, I. J., Criado-Alvarez, J. J., Diaz, J., Linares, C., Mayoral, S., & Montero, J. C. (2008). Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975–2003. International Journal of Biometeorology, 52(4), 291–299. https://doi.org/10.1007/s00484-007-0123-6.

    Article  Google Scholar 

  • Montero, J. C., Mirón, I. J., Criado-Álvarez, J. J., Linares, C., & Díaz, J. (2012). Influence of local factors in the relationship between mortality and heat waves: Castile-La Mancha (1975–2003). Science of the Total Environment, 414(Supplement C), 73–80. https://doi.org/10.1016/j.scitotenv.2011.10.009.

    Article  CAS  Google Scholar 

  • Nairn, J., Fawcett, R., & Ray, D. Defining and predicting Excessive Heat events, a National system. In A. J. Hollis (Ed.), Modelling and Understanding High Impact Weather’: extended abstracts of the third CAWCR Modelling Workshop, 30 November – 2 December 2009, Melbourne, 2009, CAWCR Technical Report No. 17, pp. 83–86.

  • Naumova, E. N., & MacNeill, I. B. (2005). Signature-forecasting and early outbreak detection system. Environmetrics, 16(7), 749–766.

    Article  Google Scholar 

  • Naumova, E. N., & MacNeill, I. B. (2007). Seasonality assessment for biosurveillance systems. In J.-L. Auget, N. Balakrishnan, M. Mesbah, & G. Molenberghs (Eds.), Advances in Statistical Methods for the Health sciences: Applications to Cancer and AIDS studies, genome sequence analysis, and survival analysis (pp. 437–450). Boston, MA: Birkhäuser Boston.

    Chapter  Google Scholar 

  • Naumova, E. N., Jagai, J. S., Matyas, B., DeMaria, A., Jr., MacNeill, I. B., & Griffiths, J. K. (2007). Seasonality in six enterically transmitted diseases and ambient temperature. Epidemiology and Infection, 135(2), 281–292. https://doi.org/10.1017/S0950268806006698.

    Article  CAS  Google Scholar 

  • Naumova, E. N., Parisi, S. M., Castronovo, D., Pandita, M., Wenger, J., & Minihan, P. (2009). Pneumonia and influenza hospitalizations in elderly people with dementia. Journal of the American Geriatrics Society, 57(12), 2192–2199. https://doi.org/10.1111/j.1532-5415.2009.02565.x.

    Article  Google Scholar 

  • O'Neill, M. S., & Ebi, K. L. (2009). Temperature extremes and health: impacts of climate variability and change in the United States. Journal of Occupational and Environmental Medicine, 51(1), 13–25. https://doi.org/10.1097/JOM.0b013e318173e122.

    Article  Google Scholar 

  • Pascal, M., Wagner, V., Le Tertre, A., Laaidi, K., Honoré, C., Bénichou, F., & Beaudeau, P. (2013). Definition of temperature thresholds: the example of the French heat wave warning system. International Journal of Biometeorology, 57 (1), 21–29.

    Article  Google Scholar 

  • Robine, J. M., Cheung, S. L., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., et al. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171–178. https://doi.org/10.1016/j.crvi.2007.12.001.

    Article  Google Scholar 

  • Schifano, P., Leone, M., De Sario, M., de'Donato, F., Bargagli, A. M., D'Ippoliti, D., et al. (2012). Changes in the effects of heat on mortality among the elderly from 1998-2010: Results from a multicenter time series study in Italy. Environmental Health, 11, 58. https://doi.org/10.1186/1476-069X-11-58.

    Article  Google Scholar 

  • Sheridan, S. C., & Allen, M. J. (2018). Temporal trends in human vulnerability to excessive heat. Environmental Research Letters. https://doi.org/10.1088/1748-9326/aab214.

    Article  Google Scholar 

  • Smith, T. T., Zaitchik, B. F., & Gohlke, J. M. (2013). Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118(3–4), 811–825. https://doi.org/10.1007/s10584-012-0659-2.

    Article  Google Scholar 

  • Tong, S., Ren, C., & Becker, N. (2010). Excess deaths during the 2004 heatwave in Brisbane, Australia. International Journal of Biometeorology, 54(4), 393–400. https://doi.org/10.1007/s00484-009-0290-8.

    Article  Google Scholar 

  • van Loenhout, J. A. F., Delbiso, T. D., Kiriliouk, A., Rodriguez-Llanes, J. M., Segers, J., & Guha-Sapir, D. (2018). Heat and emergency room admissions in the Netherlands. BMC Public Health, 18(1), 108. https://doi.org/10.1186/s12889-017-5021-1.

    Article  Google Scholar 

  • Wenger, J. B., & Naumova, E. N. (2010). Seasonal synchronization of influenza in the United States older adult population. PLoS One, 5(4), e10187. https://doi.org/10.1371/journal.pone.0010187.

    Article  CAS  Google Scholar 

  • White-Newsome, J. L., Ekwurzel, B., Baer-Schultz, M., Ebi, K. L., O'Neill, M. S., & Anderson, G. B. (2014). Survey of county-level heat preparedness and response to the 2011 summer heat in 30 U.S. states. Environmental Health Perspectives, 122(6), 573–579. https://doi.org/10.1289/ehp.1306693.

    Article  Google Scholar 

  • Wu, W., Xiao, Y., Li, G., Zeng, W., Lin, H., Rutherford, S., Xu, Y., Luo, Y., Xu, X., Chu, C., & Ma, W. (2013). Temperature–mortality relationship in four subtropical Chinese cities: A time-series study using a distributed lag non-linear model. Science of the Total Environment, 449(Supplement C), 355–362. https://doi.org/10.1016/j.scitotenv.2013.01.090.

    Article  CAS  Google Scholar 

  • Wu, J., Zhou, Y., Gao, Y., Fu, J. S., Johnson, B. A., Huang, C., Kim, Y. M., & Liu, Y. (2014). Estimation and uncertainty analysis of impacts of future heat waves on mortality in the eastern United States. Environmental Health Perspectives, 122(1), 10–16. https://doi.org/10.1289/ehp.1306670.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to three reviewers for thoughtful comments and suggestions and editorial help provided by Tania M. Alarcon-Falconi and Yuri N. Naumov. All statements of fact, opinion, or analysis expressed are those of the authors and do not reflect the official positions or views of the Intelligence Community or any other U.S. Government agency. Nothing in the contents should be construed as asserting or implying U.S. Government authentication of information or Intelligence Community endorsement of the author’s views.

Funding

The hospitalization records were acquired from the Centers for Medicare and Medicaid Services (CMS) in part through the project “Gastroenteritis and Extreme Weather Events in Elderly-GEWEL” (NIEHS-R01ES013171) funded by the National Institute of Environmental Health Sciences. This study was in part supported by a grant from the Intelligence Community Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Naumova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Geospatial Technology in Environmental Health Applications

Electronic supplementary material

Supplementary Table 1

(DOCX 17 kb)

Supplementary Table 2

(DOCX 109 kb)

Supplementary Table 3

(DOCX 14 kb)

Supplementary Table 4

(DOCX 122 kb)

Supplementary Table 5

(DOCX 73 kb)

Supplementary Table 6

(DOCX 38 kb)

Figure S1

Daily time series of heat-related hospitalization counts (black lines) and fitted model curves (yellow empty circle) in older adults for each of the eight LKN climate regions: CdCa (a), CwCd (b), HwHd (c), HwHw (d), TaTa (e), TdTa (f), TwCd (g), TwTw (h). (PNG 2327 kb)

High resolution image (EPS 8619 kb)

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liss, A., Naumova, E.N. Heatwaves and hospitalizations due to hyperthermia in defined climate regions in the conterminous USA. Environ Monit Assess 191 (Suppl 2), 394 (2019). https://doi.org/10.1007/s10661-019-7412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7412-5

Keywords

Navigation