Skip to main content
Log in

Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In bioaccumulation studies, the interpretation of pollutant contents in the target biomonitor has to be performed by assessing a deviation from an unaltered reference condition. A common strategy consists in the comparison with background element content (BEC) values, often built up by uncritically merging methodologically heterogeneous data. In this respect, the acid digestion of samples was identified as a major step affecting BEC data. Here, the analytical outcomes of two acid mixtures were compared on a set of matched paired samples of the lichen Pseudevernia furfuracea, a widely used biomonitor for which BEC values based on partial digestion were previously provided. The standard reference material BCR 482 (P. furfuracea) was used to validate analytical procedures consisting of either a HF total mineralization or an aqua regia partial one, both associated to ICP-MS multi-element analysis. In particular, the performance of the procedures was evaluated by comparing analytical results of field samples with the accuracy obtained on BCR aliquots (measured-to-expected percentage ratio). The total digestion showed a better performance for Al, As, Ba, Ca, Cd, Cu, Fe, Mn, Ni, Se, Sn, and Zn, whereas the opposite was found for Cr, Co, P, and S. Moreover, new BEC values were provided for P. furfuracea using a consolidated statistical approach, after a total sample digestion with hydrofluoric acid. The multivariate investigation of the background variability of 43 elements in 57 remote Italian sites led to the identification of geographically homogeneous areas for which BEC values are provided for use as reference in biomonitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashoka, S., Peake, B. M., Bremner, G., Hageman, K. J., & Reid, M. R. (2009). Comparison of digestion methods for ICP-MS determination of trace elements in fish tissues. Analytica Chimica Acta, 653(2), 191–199.

    CAS  Google Scholar 

  • Aziz, R. A., Rahim, S. A., Sahid, I., & Idris, W. M. R. (2015). Speciation and availability of heavy metals on serpentinized paddy soil and paddy tissue. Procedia—Social and Behavioral Sciences, 195, 1658–1665.

    Google Scholar 

  • Baffi, C., Bettinelli, M., Beone, G. M., & Spezia, S. (2002). Comparison of different analytical procedures in the determination of trace elements in lichens. Chemosphere, 48(3), 299–306.

    CAS  Google Scholar 

  • Bandura, D. R., Baranov, V. I., & Tanner, S. D. (2002). Detection of ultratrace phosphorus and sulfur by quadrupole ICPMS with dynamic reaction cell. Analytical Chemistry, 74(7), 1497–1502.

    CAS  Google Scholar 

  • Bargagli, R. (1998). Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer.

    Google Scholar 

  • Bargagli, R., & Mikhailova, I. (2002). Accumulation of inorganic contaminants. In P. L. Nimis, C. Scheidegger, & W. A. Wolseley (Eds.), Monitoring with lichens—monitoring lichens (pp. 65–84). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Bettinelli, M., Perotti, M., Spezia, S., Baffi, C., Beone, G. M., Alberici, F., Bergonzi, S., Bettinelli, C., Cantarini, P., & Mascetti, L. (2002). The role of analytical methods for the determination of trace elements in environmental biomonitors. Microchemical Journal, 73(1–2), 131–152.

    CAS  Google Scholar 

  • Capozzi, F., Giordano, S., Di Palma, A., Spagnuolo, V., De Nicola, F., & Adamo, P. (2016). Biomonitoring of atmospheric pollution by moss bags: discriminating urban-rural structure in a fragmented landscape. Chemosphere, 149, 211–218.

    CAS  Google Scholar 

  • Carvalho Vieira, E., Yassuo Kamogawa, M., Guimarães Lemos, S., de Araújo Nóbrega, J., & de Araújo Nogueira, R. (2005). Decomposição de amostras de solos assistida por radiação microndas: estratégia para evitar a formação de fluoretos insolúveis. Revista Brasileira de Cincia do Solo, 29, 547–533.

    Google Scholar 

  • Castilho, I. N. B., Welz, B., Vale, M. G. R., de Andrade, J. B., Smichowski, P., Shaltouta, A. A., Colaresa, L., & Carasek, E. (2012). Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters. Talanta, 88, 689–695.

    CAS  Google Scholar 

  • Cecconi, E., Incerti, G., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., Candotto Carniel, F., Favero-Longo, S. E., Giordano, S., Puntillo, D., Ravera, S., Spagnuolo, V., & Tretiach, M. (2018). Background element content of the lichen Pseudevernia furfuracea: a supra-national state of art implemented by novel field data from Italy. Science of the Total Environment, 622, 282–292.

    Google Scholar 

  • Cecconi, E., Fortuna, L., Benesperi, R., Bianchi, E., Brunialti, G., Contardo, T., Di Nuzzo, L., Frati, L., Monaci, F., Munzi, S., Nascimbene, J., Paoli, L., Ravera, S., Vannini, A., Giordani, P., Loppi, S., & Tretiach, M. (2019). New interpretative scales for lichen bioaccumulation data: the Italian proposal. Atmosphere, 19, 136.

    Google Scholar 

  • Chen, M., & Ma, L. Q. (1998). Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils. Journal of Environmental Quality, 27(6), 1294–1300.

    CAS  Google Scholar 

  • Chen, M., & Ma, L. Q. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), 491–499.

    CAS  Google Scholar 

  • Cook, J. M., Gardner, M. J., Griffiths, A. H., Jessep, M. A., Ravenscroft, J. E., & Yates, R. (1997). The comparability of sample digestion techniques for the determination of metals in sediments. Marine Pollution Bulletin, 34(8), 637–644.

    CAS  Google Scholar 

  • da Silva, Y. J. A. B., do Nascimento, C. W. A., & Biondi, C. M. (2014). Comparison of USEPA digestion methods to heavy metals in soil samples. Environmental Monitoring and Assessment, 186(1), 47–53.

    Google Scholar 

  • Gallo, L., Corapi, A., Apollaro, C., Vespasiano, G., & Lucadamo, L. (2017). Effect of the interaction between transplants of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf and rainfall on the variation of element concentrations associated with the water-soluble part of atmospheric depositions. Atmospheric Pollution Research, 8(5), 912–920.

    Google Scholar 

  • García-Ordiales, E., Esbrí, J. M., Covelli, S., López-Berdonces, M. A., Higueras, P. L., & Loredo, J. (2016). Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain). Environmental Science and Pollution Research, 23(7), 6024–6038.

    Google Scholar 

  • Gaudino, S., Galas, C., Belli, M., Barbizzi, S., de Zorzi, P., Jaćimović, R., Jeran, Z., Pati, A., & Sansone, U. (2007). The role of different soil sample digestion methods on trace elements analysis: a comparison of ICP-MS and INAA measurement results. Accreditation and Quality Assurance, 12(2), 84–93.

    CAS  Google Scholar 

  • Goddard, S., & Brown, R. (2014). Investigation into alternative sample preparation techniques for the determination of heavy metals in stationary source emission samples collected on quartz filters. Sensors, 14(11), 21,676–21,692.

    Google Scholar 

  • Hamilton, P. B., Lavoie, I., Alpay, S., & Ponader, K. (2015). Using diatom assemblages and sulfur in sediments to uncover the effects of historical mining on Lake Arnoux (Quebec, Canada): a retrospective of economic benefits vs. environmental debt. Frontiers in Ecology and Evolution, 3, 99.

    Google Scholar 

  • Hoaglin, D. C., Iglewicz, B., & Tukey, J. W. (1986). Performance of some resistant rules for outlier labeling. Journal of the American Statistical Association, 81(396), 991–999.

    Google Scholar 

  • Incerti, G., Cecconi, E., Capozzi, F., Adamo, P., Bargagli, R., Benesperi, R., Candotto Carniel, F., Cristofolini, F., Giordano, S., Puntillo, D., Spagnuolo, V., & Tretiach, M. (2017). Infraspecific variability in baseline element composition of the epiphytic lichen Pseudevernia furfuracea in remote areas: implications for biomonitoring of air pollution. Environmental Science and Pollution Research, 24(9), 8004–8016.

    CAS  Google Scholar 

  • Kackstaetter, U. R., & Heinrichs, G. (1997). Validity of low cost laboratory geochemistry for environmental applications. Water, Air, and Soil Pollution, 95(1–4), 119–131.

    CAS  Google Scholar 

  • Kalembkiewicz, J., & Sitarz-Palczak, E. (2001). Optimization of mineralization procedures for the determination of Mn in soil samples by FAAS. Atomic Spectroscopy, 22(6), 433–437.

    CAS  Google Scholar 

  • Kuleshov, V. (2016). Isotope Geochemistry: The origin and formation of manganese rocks and ores. Amsterdam: Elsevier.

    Google Scholar 

  • Le Fèvre, B., & Pin, C. (2005). A straightforward separation scheme for concomitant Lu-Hf and Sm-Nd isotope ratio and isotope dilution analysis. Analytica Chimica Acta, 543(1–2), 209–221.

    Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • Li, T. C., Yuan, C. S., Huang, H. C., Lee, C. L., Wu, S. P., & Tong, C. (2017). Clustered long-range transport routes and potential sources of PM 2.5 and their chemical characteristics around the Taiwan Strait. Atmospheric Environment, 148, 152–166.

    CAS  Google Scholar 

  • May, T. W., & Wiedmeyer, R. H. (1998). A table of polyatomic interferences in ICP-MS. Atomic Spectroscopy, 19, 150–155.

    CAS  Google Scholar 

  • Nash, T. H., III. (2008). Nutrients, elemental accumulation, mineral cycling. In T. H. Nash III (Ed.), Lichen biology (pp. 236–253). Cambridge: Cambridge University Press.

    Google Scholar 

  • Niazi, S. B., Littlejohn, D., & Halls, D. J. (1993). Rapid partial digestion of biological tissues with nitric acid for the determination of trace elements by atomic spectrometry. Analyst, 118(7), 821–825.

    CAS  Google Scholar 

  • Perez-Santana, S., Alfonso, M. P., Tagle, M. V., Icart, M. P., Brunori, C., & Morabito, R. (2007). Total and partial digestion of sediments for the evaluation of trace element environmental pollution. Chemosphere, 66(8), 1545–1553.

    CAS  Google Scholar 

  • Quevauviller, P., Herzig, R., & Muntau, H. (1996). Certified reference material of lichen (CRM 482) for the quality control of trace element biomonitoring. Science of the Total Environment, 187(2), 143–152.

    CAS  Google Scholar 

  • R Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Rashid, M. H., Fardous, Z., Chowdhury, M. A. Z., Alam, M. K., Bari, M. L., Moniruzzaman, M., & Gan, S. H. (2016). Determination of heavy metals in the soils of tea plantations and in fresh and processed tea leaves: an evaluation of six digestion methods. Chemistry Central Journal, 10(1), 7.

    Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346(1–3), 1–16.

    CAS  Google Scholar 

  • Riga-Karandinos, A. N., & Karandinos, M. G. (1998). Assessment of air pollution from a lignite power plant in the plain of Megalopolis (Greece) using as biomonitors three species of lichens; impacts on some biochemical parameters of lichens. Science of the Total Environment, 215(1–2), 167–183.

    CAS  Google Scholar 

  • Rikkinen, J. (1997). Habitat shifts and morphological variation of Pseudevernia furfuracea along a topographical gradient. Symbolae Botanicae Upsalienses, 32, 223–245.

    Google Scholar 

  • Rodushkin, I., Ruth, T., & Huhtasaari, Å. (1999). Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Analytica Chimica Acta, 378(1–3), 191–200.

    CAS  Google Scholar 

  • Rönkkömäki, H., Pöykiö, R., Nurmesniemi, H., Popov, K., Merisalu, E., Tuomi, T., & Välimäki, I. (2008). Particle size distribution and dissolution properties of metals in cyclone fly ash. International Journal of Environmental Science and Technology, 5(4), 485–494.

    Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., Vos, D., et al. (2005). Geochemical Atlas of Europe. Part 1. Background information, methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  • Sandroni, V., & Smith, C. M. (2002). Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma–atomic emission spectrometry. Analytica Chimica Acta, 468(2), 335–344.

    CAS  Google Scholar 

  • Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462(1), 59–72.

    CAS  Google Scholar 

  • Silva, J. S. A., Maranhão, T. D. A., de Oliveira, F. J. S., Curtius, A. J., & Frescura, V. L. A. (2014). Determination of rare earth elements in spent catalyst samples from oil refinery by dynamic reaction cell inductively coupled plasma mass spectrometry. Journal of the Brazilian Chemical Society, 25(6), 1062–1070.

    CAS  Google Scholar 

  • Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W., & Wolseley, P. A. (2009). The lichens of Great Britain and Ireland. London: British Lichen Society.

    Google Scholar 

  • Tam, N. F. Y., & Yao, M. W. Y. (1999). Three digestion methods to determine concentrations of Cu, Zn, Cd, Ni, Pb, Cr, Mn, and Fe in mangrove sediments from Sai Keng, Chek Keng, and Sha Tau Kok, Hong Kong. Bulletin of Environmental Contamination and Toxicology, 62(6), 708–716.

    CAS  Google Scholar 

  • Tretiach, M., Candotto Carniel, F., Loppi, S., Carniel, A., Bortolussi, A., Mazzilis, D., & Del Bianco, C. (2011a). Lichen transplants as a suitable tool to identify mercury pollution from waste incinerators: a case study from NE Italy. Environmental Monitoring and Assessment, 175(1–4), 589–600.

    CAS  Google Scholar 

  • Tretiach, M., Pittao, E., Crisafulli, P., & Adamo, P. (2011b). Influence of exposure sites on trace element enrichment in moss-bags and characterization of particles deposited on the biomonitor surface. Science of the Total Environment, 409(4), 822–830.

    CAS  Google Scholar 

  • Tuncel, S. G., Yenisoy-Karakas, S., & Dogangün, A. (2004). Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures. Talanta, 63(2), 273–277.

    CAS  Google Scholar 

  • Yafa, C., & Farmer, J. G. (2006). A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 557(1–2), 296–303.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. M. Bidussi, D. Cataldo, A. Carasci, T. Craighero, F. Cristofolini, S. Martellos, F. Panepinto, G. Potenza, and A. V. Romano for help in lichen sampling.

Funding

This work was supported by the University of Trieste (grant number: FRA2015, resp. M. T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Tretiach.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 471 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecconi, E., Incerti, G., Capozzi, F. et al. Background element content in the lichen Pseudevernia furfuracea: a comparative analysis of digestion methods. Environ Monit Assess 191, 260 (2019). https://doi.org/10.1007/s10661-019-7405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7405-4

Keywords

Navigation