Skip to main content
Log in

Clay beads as artificial trapping matrices for monitoring bacterial distribution among urban stormwater infiltration systems and their connected aquifers

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Stormwater infiltration systems (SIS) have been developed to limit surface runoff and flooding in urban areas. The impacts of such practices on the ecological and biological quality of groundwater ecosystems remain poorly studied due to the lack of efficient methodologies to assess microbiological quality of aquifers. In the present study, a monitoring method based on the incubation of artificial matrices (clay beads) is presented to evaluate microbial biomass, microbial activities, and bacterial community structure. Four microbial variables (biomass, dehydrogenase and hydrolytic activities, bacterial community structures) were measured on clay beads incubated in three urban water types (stormwater surface runoffs, SIS-impacted and non-impacted groundwaters) for six SIS. Analyses based on next-generation sequencing (NGS) of partial rrs (16S rRNA) PCR products (V5-V6) were used to compare bacterial community structures of biofilms on clay beads after 10 days of incubation with those of waters collected from the same sampling points at three occasions. Biofilm biomass and activities on clay beads were indicative of nutrient transfers from surface to SIS-impacted groundwaters. Biofilms allowed impacts of SIS on groundwater bacterial community structures to be determined. Although bacterial communities on clay beads did not perfectly match those of waters, clay beads captured the most abundant bacterial taxa. They also captured bacterial taxa that were not detected in waters collected at three occasions during the incubation, demonstrating the integrative character of this approach. Monitoring biofilms on clay beads also allowed the tracking of bacterial genera containing species representing health concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfreider, A., Krössbacher, M., & Psenner, R. (1997). Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Research, 31, 832–840.

    Article  CAS  Google Scholar 

  • Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46.

    Google Scholar 

  • Battin, T. J. (1997). Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms. Science of the Total Environment, 198, 51–60.

    Article  CAS  Google Scholar 

  • Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14, 251–263.

    Article  CAS  Google Scholar 

  • Bernardin-Souibgui, C., Barraud, S., Bourgeois, E., Aubin, J. B., Bécouze-Lareure, C., Wiest, L., Marjolet, L., Colinon, C., Lipeme-Kouyi, G., Cournoyer, B., & Blaha, D. (2018). Incidence of hydrological, chemical, and physical constraints on bacterial pathogens, Nocardia cells, and fecal indicator bacteria trapped in an urban stormwater detention basin in Chassieu, France. Environmental Science and Pollution Research, 25, 24860–24881.

    Article  CAS  Google Scholar 

  • Branda, S. S., Vik, Å., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13, 20–26.

    Article  CAS  Google Scholar 

  • Chapelle, F. H. (2001). Ground-water microbiology and geochemistry (2nd ed.). New York: Wiley.

    Google Scholar 

  • Claassen, H. C. (1982). Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer (no. 82–102). US Geological: Survey.

    Google Scholar 

  • Claret, C. (1998). Hyporheic biofilm development on artificial substrata, as a tool for assessing trophic status of aquatic systems: First results. Annales de Limnologie – International Journal of Limnology, 34, 119–128.

    Article  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual Reviews in Microbiology, 49, 711–745.

    Article  CAS  Google Scholar 

  • Crump, B. C., Armbrust, E. V., & Baross, J. A. (1999). Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology, 65, 3192–3204.

    CAS  Google Scholar 

  • Danielopol, D. L., Gibert, J., Griebler, C., Gunatilaka, A., Hahn, H. J., Messana, G., Notenboom, J., & Sket, B. (2004). Incorporating ecological perspectives in European groundwater management policy. Environmental Conservation, 31, 185–189.

    Article  CAS  Google Scholar 

  • Datry, T., Malard, F., & Gibert, J. (2004). Dynamics of solutes and dissolved oxygen in shallow urban groundwater below a stormwater infiltration basin. Science of the Total Environment, 329, 215–229.

    Article  CAS  Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.

    Article  CAS  Google Scholar 

  • European Groundwater Directive, EU-GWD. (2006). Directive 2006/118 of the European parliament and the council of the 23 October 2006. Official Journal of the European Communities, L372, 371–392.

    Google Scholar 

  • Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.-L., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12, 525–542.

    Article  Google Scholar 

  • Flynn, T. M., Sanford, R. A., Ryu, H., Bethke, C. M., Levine, A. D., Ashbolt, N. J., & Santo Domingo, J. W. (2013). Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiology, 13, 146. https://doi.org/10.1186/1471-2180-13-146.

    Article  CAS  Google Scholar 

  • Fontvieille, D. A., Outaguerouine, A., & Thevenot, D. R. (1992). Fluorescein diacetate hydrolysis as a measure of microbial activity in aquatic systems: Application to activated sludges. Environmental Technology, 13, 531–540.

    Article  CAS  Google Scholar 

  • Foulquier, A. (2009). Ecologie fonctionnelle dans les nappes phréatiques: liens entre flux de matière organique, activité et diversité biologiques. Doctoral thesis, University Lyon 1, 259 pp.

  • Foulquier, A., Malard, F., Barraud, S., & Gibert, J. (2009). Thermal influence of urban groundwater recharge from stormwater infiltration basins. Hydrological Processes, 23, 1701–1713.

    Article  Google Scholar 

  • Foulquier, A., Malard, F., Mermillod-Blondin, F., Datry, T., Simon, L., Montuelle, B., & Gibert, J. (2010). Change in dissolved organic carbon and oxygen at the water table region of an aquifer recharged with stormwater: Biological uptake or mixing? Biogeochemistry, 99, 31–47.

    Article  CAS  Google Scholar 

  • Goldscheider, N., Hunkeler, D., & Rossi, P. (2006). Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeology Journal, 14, 926–941.

    Article  CAS  Google Scholar 

  • Grasshoff, K., Ehrhardt, M., & Kremling, K. (1999). Methods of seawater analysis (3rd ed.). Weinheim; New York; Chiester; Brisbane; Singapore; Toronto: Wiley-VCH.

    Book  Google Scholar 

  • Griebler, C., & Avramov, M. (2015). Groundwater ecosystem services: A review. Freshwater Science, 34, 355–367.

    Article  Google Scholar 

  • Griebler, C., Mindl, B., Slezak, D., & Geiger-Kaiser, M. (2002). Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquatic Microbial Ecology, 28, 117–129.

    Article  Google Scholar 

  • Griebler, C., Stein, H., Kellermann, C., Berkhoff, S., Brielmann, H., Schmidt, S., Selesi, D., Steube, C., Fuchs, A., & Hahn, H. J. (2010). Ecological assessment of groundwater ecosystems—Vision or illusion? Ecological Engineering, 36, 1174–1190.

    Article  Google Scholar 

  • Griebler, C., Malard, F., & Lefébure, T. (2014). Current developments in groundwater ecology—From biodiversity to ecosystem function and services. Current Opinion in Biotechnology, 27, 159–167.

    Article  CAS  Google Scholar 

  • Hahn, H. J. (2006). The GW-Fauna-index: A first approach to a quantitative ecological assessment of groundwater habitats. Limnologica-Ecology and Management of Inland Waters, 36, 119–137.

    Article  Google Scholar 

  • Houri-Davignon, C., Relexans, J.-C., & Etcheber, H. (1989). Measurement of actual electron transport system (ETS) activity in marine sediments by incubation with INT. Environmental Technology Letters, 10, 91–100.

    Article  CAS  Google Scholar 

  • Humphreys, W. F. (2009). Hydrogeology and groundwater ecology: Does each inform the other? Hydrogeology Journal, 17, 5–21.

    Article  CAS  Google Scholar 

  • Iribar, A., Sanchez-Perez, J. M., Lyautey, E., & Garabétian, F. (2008). Differentiated free-living and sediment-attached bacterial community structure inside and outside denitrification hotspots in the river-groundwater interface. Hydrobiologia, 598, 109–121.

    Article  CAS  Google Scholar 

  • Iribar, A., Hallin, S., Sanchez-Pérez, J. M., Enwall, K., Poulet, N., & Garabétian, F. (2015). Potential denitrification rates are spatially linked to colonization patterns of nosZ genotypes in an alluvial wetland. Ecological Engineering, 80, 191–197.

    Article  Google Scholar 

  • Jeng, H. C., England, A. J., & Bradford, H. B. (2005). Indicator organisms associated with stormwater suspended particles and estuarine sediment. Journal of Environmental Science and Health, 40, 779–791.

    Article  CAS  Google Scholar 

  • Korbel, K. L., & Hose, G. C. (2011). A tiered framework for assessing groundwater ecosystem health. Hydrobiologia, 661, 329–349.

    Article  Google Scholar 

  • Korbel, K. L., & Hose, G. C. (2017). The weighted groundwater health index: Improving the monitoring and management of groundwater resources. Ecological Indicators, 75, 164–181.

    Article  Google Scholar 

  • Korbel, K., Chariton, A., Stephenson, S., Greenfield, P., & Hose, G. C. (2017). Wells provide a distorted view of life in the aquifer: Implications for sampling, monitoring and assessment of groundwater ecosystems. Scientific Reports, 7, 40702.

    Article  CAS  Google Scholar 

  • Marsalek, J., & Chocat, B. (2002). International report: Stormwater management. Water Science and Technology, 46, 1–17.

    Article  CAS  Google Scholar 

  • Marti, R., Bécouze-Lareure, C., Ribun, S., Marjolet, L., Souibgui, C. B., Aubin, J. B., Lipeme Kouyi, G., Wiest, L., Blaha, D., & Cournoyer, B. (2017). Bacteriome genetic structures of urban deposits are indicative of their origin and impacted by chemical pollutants. Scientific Reports, 7, 13219.

    Article  Google Scholar 

  • Mermillod-Blondin, F., Foulquier, A., Maazouzi, C., Navel, S., Negrutiu, Y., Vienney, A., Simon, L., & Marmonier, P. (2013). Ecological assessment of groundwater trophic status by using artificial substrates to monitor biofilm growth and activity. Ecological Indicators, 25, 230–238.

    Article  CAS  Google Scholar 

  • Mermillod-Blondin, F., Simon, L., Maazouzi, C., Foulquier, A., Delolme, C., & Marmonier, P. (2015). Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency. Water Research, 81, 27–37.

    Article  CAS  Google Scholar 

  • Niemczynowicz, J. (1999). Urban hydrology and water management—present and future challenges. Urban Water, 1, 1–14.

    Article  Google Scholar 

  • Nogales, B., Timmis, K. N., Nedwell, D. B., & Osborn, A. M. (2002). Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Applied and Environmental Microbiology, 68, 5017–5025.

    Article  CAS  Google Scholar 

  • Oksanen, J., Kindt, R., Legendre, P., & O’Hara, B. V. (2007). The vegan package. Community ecology package, R package version 1. pp. 8–5.

  • Pabich, W. J., Valiela, I., & Hemond, H. F. (2001). Relationship between DOC concentration and vadose zone thickness and depth below the water table in groundwater of Cape Cod, U.S.A. Biogeochemistry, 553, 247–268.

    Article  Google Scholar 

  • Peterson, G. L. (1977). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry, 83, 346–356.

    Article  CAS  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glockner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590–D596.

    Article  CAS  Google Scholar 

  • Rösel, S., & Grossart, H.-P. (2012). Contrasting dynamics in activity and community composition of free-living and particle-associated bacteria in spring. Aquatic Microbial Ecology, 66, 169–181.

    Article  Google Scholar 

  • Schloss, P. D., & Westcott, S. L. (2011). Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Applied and Environmental Microbiology, 77, 3219–3226.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Gevers, D., & Westcott, S. L. (2011). Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One, 6, e27310.

    Article  CAS  Google Scholar 

  • Sébastian, C., Barraud, S., Ribun, S., Zoropogui, A., Blaha, D., Becouze-Lareure, C., Lipeme Kouyi, G., & Cournoyer, B. (2014). Accumulated sediments in a detention basin: Chemical and microbial hazard assessment linked to hydrological processes. Environmental Science and Pollution Research, 21, 5367–5378.

    Article  Google Scholar 

  • Servais, P., Anzil, A., & Ventresque, C. (1989). Simple method for determination of biodegradable dissolved organic carbon in water. Applied and Environmental Microbiology, 55, 2732–2734.

    CAS  Google Scholar 

  • Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2, 263–275.

    Article  Google Scholar 

  • Stein, H., Kellermann, C., Schmidt, S. I., Brielmann, H., Steube, C., Berkhoff, S. E., Fuchs, A., Hahn, H. J., Thulin, B., & Griebler, C. (2010). The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. Journal of Environmental Monitoring, 12, 242–254.

    Article  CAS  Google Scholar 

  • Steube, C., Richter, S., & Griebler, C. (2009). First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeology Journal, 17, 23–35.

    Article  Google Scholar 

  • Voisin, J. 2017. Influence des pratiques de recharge des aquifères par des eaux pluviales sur les communautés microbiennes des nappes phréatiques. Doctoral thesis, University Lyon 1, 196 pp.

  • Voisin, J., Cournoyer, B., & Mermillod-Blondin, F. (2015). Utilisation de billes de verre comme substrats artificiels pour la caractérisation des communautés microbiennes dans les nappes phréatiques : mise au point méthodologique. La Houille Blanche, 4, 52–57.

    Article  Google Scholar 

  • Voisin, J., Cournoyer, B., & Mermillod-Blondin, F. (2016). Assessment of artificial substrates for evaluating groundwater microbial quality. Ecological Indicators, 71, 577–586.

    Article  CAS  Google Scholar 

  • Voisin, J., Cournoyer, B., Vienney, A., & Mermillod-Blondin, F. (2018). Aquifer recharge with stormwater runoff in urban areas: Influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater. Science of the Total Environment, 637-638, 1496–1507.

  • Wang, Q. (2007). Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267.

    Article  CAS  Google Scholar 

  • Williamson, W. M., Close, M. E., Leonard, M. M., Webber, J. B., & Lin, S. (2012). Groundwater biofilm dynamics grown in situ along a nutrient gradient. Groundwater, 50, 690–703.

    Article  CAS  Google Scholar 

  • Winiarski, T., Bedell, J. P., Delolme, C., & Perrodin, Y. (2006). The impact of stormwater on a soil profile in an infiltration basin. Hydrogeology Journal, 14, 1244–1251.

    Article  CAS  Google Scholar 

  • Zhou, Y., Kellermann, C., & Griebler, C. (2012). Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiology Ecology, 81, 230–242.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by l’Agence Nationale de la Recherche [ANR-16-CE32-0006 FROG], Lyon Metropole within the framework of the experimental observatory for urban hydrology (OTHU, http://www.graie.org/othu/), and the French national research program for environmental and occupational health of Anses under the terms of project “Iouqmer” EST 2016/1/120. We thank Félix Vallier, Antonin Vienney, and Laurent Simon for support and advices during field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Mermillod-Blondin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table 1

(XLSX 8775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mermillod-Blondin, F., Voisin, J., Marjolet, L. et al. Clay beads as artificial trapping matrices for monitoring bacterial distribution among urban stormwater infiltration systems and their connected aquifers. Environ Monit Assess 191, 58 (2019). https://doi.org/10.1007/s10661-019-7190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7190-0

Keywords

Navigation