Skip to main content

Advertisement

Log in

Hydrogeochemical and isotopic tracers for identification of seasonal and long-term over-exploitation of the Pleistocene thermal waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 12 May 2016

Abstract

The aim of the study was to develop and test an optimal and cost-effective regional quality monitoring system in depleted transboundary low-temperature Neogene geothermal aquifers in the west Pannonian basin. Potential tracers for identification of seasonal and long-term quality changes of the Pleistocene thermal waters were investigated at four multiple-screened wells some 720 to 1570 m deep in Slovenia. These thermal waters are of great balneological value owing to their curative effects and were sampled monthly between February 2014 and January 2015. Linear correlation and regression analyses, ANOVA and Kolmogorov–Smirnov two-sample test for two independent samples were used to determine their seasonal and long-term differences. Temperature, pH, electrical conductivity, redox potential and dissolved oxygen did not identify varying inflow conditions; however, they provided sufficient information to distinguish between the four end-members. Characteristic (sodium) and conservative (chloride) tracers outlined long-term trends in changes in quality but could not differentiate between the seasons. Stable isotopes of δ 18O and δ 2H were used to identify sequential monthly and long-term trends, and origin and mixing of waters, but failed to distinguish the difference between the seasons. A new local paleo-meteoric water line (δ 2H = 9.2*δ 18O + 26.3) was outlined for the active regional groundwater flow system in the Pannonian to Pliocene loose sandstone and gravel. A new regression line (δ 2H = 2.3*δ 18O–45.2) was calculated for thermomineral water from the more isolated Badenian to Lower Pannonian turbiditic sandstone, indicating dilution of formation water. Water composition was generally stable over the 1-year period, but long-term trends indicate that changes in quality occur, implying deterioration of the aquifers status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anonymous (2004). Rules on natural mineral water, spring water and table water, and Rules on its modification and supplements (in Slovenian). Official Gazette of R Slovenia, 50/2004, 75/2005, 6761–6772, 8039.

  • Appleyard, S., & Cook, T. (2009). Reassessing the management of groundwater use from sandy aquifers: acidification and base cation depletion exacerbated by drought and groundwater withdrawal on the Gnangara Mound, Western Australia. Hydrogeology Journal, 17, 579–588. doi:10.1007/s10040-008-0410-2.

    Article  CAS  Google Scholar 

  • Arnorsson, S. (2000). Isotopic and chemical techniques in geothermal exploration, development and use: sampling methods, data handling, interpretation. Vienna: IAEA. 351 p.

    Google Scholar 

  • Axelsson, G. (2000). Sedimentary geothermal systems in China and Europe. In G. Axelsson & E. Gunnlaugsson (Eds.), Long-term monitoring of high- and low-enthalpy fields under exploitation (pp. 203–221). Auckland: Kokonoe, IGA.

    Google Scholar 

  • Axelsson, G., & Gunnlaugsson, E. (2000). Long-term monitoring of high- and low-enthalpy fields under exploitation. Auckland: Kokonoe, IGA. 226 p.

    Google Scholar 

  • Axelsson, G., Gunnlaugsson, E., Jónasson, T., & Ólafsson, M. (2010). Low-temperature geothermal utilization in Iceland—decades of experience. Geothermics, 39, 329–338. doi:10.1016/j.geothermics.2010.09.002.

    Article  Google Scholar 

  • Barna, G., Fórizs, I. (2007). Stable hydrological characteristics of the Balaton lake. Spatial distribution and evaporative isotope effect (in Hungarian). Hidrológiai Közlöny, 35–41.

  • Bräuer, K., Geissler, W. H., Kämpf, H., Niedermannn, S., & Rman, N. (2016). Helium and carbon isotope signatures of gas exhalations in the westernmost part of the Pannonian Basin (SE Austria/NE Slovenia): evidence for active lithospheric mantle degassing. Chemical Geology, 422, 60–70. doi:10.1016/j.chemgeo.2015.12.016.

    Article  Google Scholar 

  • Butler, J.J., Tsou, M.-S. (2003). Pumping-induced leakage in a bounded aquifer: an example of a scale-invariant phenomenon. Water Resources Research, 39. doi:10.1029/2002WR001484

  • Buzek, F., & Michaliček, M. (1997). Origin of formation waters of S-E parts of the Bohemian Massif and the Vienna Basin. Applied Geochemistry, 12, 333–343. doi:10.1016/S0883-2927(97)00006-1.

    Article  CAS  Google Scholar 

  • Ceroân, J. C., & Pulido-Bosch, A. (1999). Geochemistry of thermomineral waters in the overexploited Alto Guadalentiân aquifer (South-East Spain). Water Resources, 33, 295–300.

    Google Scholar 

  • Chen, L.-W., Gui, H.-R., & Yin, X.-X. (2011). Monitoring of flow field based on stable isotope geochemical characteristics in deep groundwater. Environmental Monitoring and Assessment, 179, 487–498. doi:10.1007/s10661-010-1751-6.

    Article  CAS  Google Scholar 

  • Clark, I., & Fritz, P. (1997). Environmental isotopes in hydrogeology (pp. 1–312). USA: CRC Press.

    Google Scholar 

  • Conti, A., Sacchi, E., Chiarle, M., Martinelli, G., & Zuppi, G. M. (2000). Geochemistry of the formation waters in the Po plain (Northern Italy): an overview. Applied Geochemistry, 15, 51–65.

    Article  CAS  Google Scholar 

  • Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703.

    Article  CAS  Google Scholar 

  • Custodio, E. (2002). Aquifer overexploitation: what does it mean? Hydrogeology Journal, 10, 254–277. doi:10.1007/s10040-002-0188-6.

    Article  Google Scholar 

  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.

    Article  Google Scholar 

  • Druschel, G. K., & Rosenberg, P. E. (2001). Non-magmatic fracture-controlled hydrothermal systems in the Idaho Batholith: South Fork Payette geothermal system. Chemical Geology, 173, 21. doi:10.1016/S0009-2541(00)00280-1.

    Article  Google Scholar 

  • Duan, Z., Pang, Z., & Wang, X. (2011). Sustainability evaluation of limestone geothermal reservoirs with extended production histories in Beijing and Tianjin, China. Geothermics, 40, 125–135. doi:10.1016/j.geothermics.2011.02.001.

    Article  Google Scholar 

  • EC (2000). Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the community action in the field of water policy (water framework directive). OJ L, 327, 22.12.2000, 237/1-327/72.

  • EC (2007). Common implementation strategy for the water framework directive (2000/60/EC), guidance document no. 15: guidance on groundwater monitoring. Luxembourg, Office for Official Publications of the European Communities, 54 p.

  • Epstein, S., & Mayeda, T. (1953). Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213–224.

    Article  CAS  Google Scholar 

  • Ferjan, T. (2012). Determination of sources of bottled waters, PhD thesis (in Slovenian). Ljubljana, University of Ljubljana.

  • Fricke, H. C., & O’Neil, J. R. (1999). The correlation between 18O = 16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters, 170, 181–196. doi:10.1016/S0012-821X(99)00105-3.

    Article  CAS  Google Scholar 

  • Gallino, S., Bulloz, M., Naffrechoux, E., Dzikowski, M., & Gasquet, D. (2008). The influence of extraction rate on the reduced sulphur content of Aix-les-Bains’ thermal spring waters: consequences for resource-quality monitoring. Applied Geochemistry, 23, 1367–1382. doi:10.1016/j.apgeochem.2007.11.014.

    Article  CAS  Google Scholar 

  • Gikas, G. D., Tsihrintzis, V. A., Akratos, C. S., & Haralambidis, G. (2009). Water quality trends in polyphytos reservoir, Aliakmon River, Greece. Environmental Monitoring and Assessment, 149, 163–181. doi:10.1007/s10661-008-0191-z.

    Article  CAS  Google Scholar 

  • Goldbrunner, J. E. (2000). Hydrogeology of deep groundwaters in Austria. Mitteilungen. Österreichische Geologische Gesellschaft, 92(1999), 281–294.

    Google Scholar 

  • Gunnlaugsson, E. (2000). Chemical monitoring. In G. Axelsson & E. Gunnlaugsson (Eds.), Long-term monitoring of high- and low-enthalpy fields under exploitation (pp. 57–76). Auckland: Kokonoe, IGA.

    Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (2002). Statistical methods in water resources, Book 4, Chapter A3. USA: USGS. 522 p.

    Google Scholar 

  • Hochstein, M. P. (1988). Assessment and modelling of geothermal reservoirs (small utilization schemes). Geothermics, 17, 15–49.

    Article  CAS  Google Scholar 

  • Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., et al. (2015). Evolution of the Pannonian basin and its geothermal resources. Geothermics, 53, 328–352. doi:10.1016/j.geothermics.2014.07.009.

    Article  Google Scholar 

  • IAEA/WMO (2015). Global network of isotopes in precipitation. The GNIP database. http://www.iaea.org/water. Accessed 26 July 2015.

  • Janža, M. (2015). A decision support system for emergency response to groundwater resource pollution in an urban area (Ljubljana, Slovenia). Environment and Earth Science, 73, 3763–3774. doi:10.1007/s12665-014-3662-2.

    Article  Google Scholar 

  • Jelen, B., Rifelj, H. (2011). Surface lithostratigraphic and tectonic structural map of T-JAM project area, northeastern Slovenia, 1:100.000 (in Slovenian). Ljubljana, GeoZS. http://www.geo-zs.si/podrocje.aspx?id=489. Accessed 26 July 2015.

  • Jirâkovâ, H., Huneau, F., Celle-Jeanton, H., Hrkal, Z., & Le Coustumer, P. (2011). Insights into palaeorecharge conditions for European deep aquifers. Hydrogeology Journal, 19, 1545–1562. doi:10.1007/s10040-011-0765-7.

    Article  Google Scholar 

  • Jørgensen, L. F., & Stockmarr, J. (2009). Groundwater monitoring in Denmark: characteristics, perspectives and comparison with other countries. Hydrogeology Journal, 17, 827–842. doi:10.1007/s10040-008-0398-7.

    Article  Google Scholar 

  • Kanduč, T., Grassa, F., McIntosh, J., Stibilj, V., Ulrich-Supovec, M., Supovec, I., & Jamnikar, S. (2014). A geochemical and stable isotope investigation of groundwater/surface-water interactions in the Velenje Basin, Slovenia. Hydrogeology Journal, 22, 971–984. doi:10.1007/s10040-014-1103-7.

    Article  Google Scholar 

  • Kaya, E., Zarrouk, S. J., & O’Sullivan, M. J. (2011). Reinjection in geothermal fields: a review of worldwide experience. Renewable and Sustainable Energy Reviews, 15, 47–68. doi:10.1016/j.rser.2010.07.032.

    Article  Google Scholar 

  • Kendall, C., & McDonnell, J. J. (2006). Isotope tracers in catchment hydrology. New York: Elsevier.

    Google Scholar 

  • Kharaka, Y. K., & Hanor, J. S. (2005). 5.16 deep fluids in the continents: I. Sedimentary basins. In J. I. Drever (Ed.), Surface and ground water, weathering, and soils (pp. 499–540). Kidlington: Elsevier.

    Google Scholar 

  • Kovács, L. Ó., & Varsányi, I. I. (2009). Origin, chemical and isotopic evolution of formation water in geopressured zones in the Pannonian Basin, Hungary. Chemical Geology, 264, 187–196. doi:10.1016/j.chemgeo.2009.03.006.

    Article  Google Scholar 

  • Kovács, L. Ó., Varsányi, I. I., & Palcsu, L. (2011). Groundwater flow system as an archive of palaeotemperature: noble gas, radiocarbon, stable isotope and geochemical study in the Pannonian Basin, Hungary. Applied Geochemistry, 26, 91–104. doi:10.1016/j.apgeochem.2010.11.006.

    Article  Google Scholar 

  • Kralj, P. (2004a). Chemical composition of low temperature (<20–40 °C) thermal waters in Slovenia. Environmental Geology, 46, 635–642. doi:10.1007/s00254-004-1001-8.

    CAS  Google Scholar 

  • Kralj, P. (2004b). Trace elements in medium-temperature (40–80 °C) thermal waters from the Mura basin (North-Eastern Slovenia). Environmental Geology, 46, 622–629. doi:10.1007/s00254-004-1000-9.

    CAS  Google Scholar 

  • Kralj, P., & Kralj, P. (2000). Thermal and mineral waters in north-eastern Slovenia. Environmental Geology, 39, 488–500. doi:10.1007/s002540050455.

    Article  CAS  Google Scholar 

  • Kralj, P., & Kralj, P. (2012). Geothermal waters from composite clastic sedimentary reservoirs: geology, production, overexploitation, well cycling and leakage—a case study of the Mura basin (SW Pannonian basin). In J. Yang (Ed.), Geothermal energy, technology and geology (pp. 47–92). Nova Science Publishers: New York.

    Google Scholar 

  • Kun, W. (2010). Monitoring and resources evaluation of the geothermal fields in Tianjin. In: Proceedings World Geothermal Congress 2010 (7 p.). Bali, IGA.

  • Lapanje, A. (2006). Origin and chemical composition of thermal and thermomineral waters (in Slovenian). Geologija, 49, 347–370. doi:10.5474/geologija.2006.025.

    Article  Google Scholar 

  • Lopez, S., Hamm, V., Le Brun, M., Schaper, L., Boissier, F., et al. (2010). 40 years of Dogger aquifer management in Ile-de-France, Paris Basin, France. Geothermics, 39, 339–356. doi:10.1016/j.geothermics.2010.09.005.

    Article  Google Scholar 

  • Mátyás, J. (1997). Stable isotopic mass balance in sandstone-shale couplets: an example from the Neogene Pannonian basin. Földtani Közlöny.

  • Mezga, K., Urbanc, J., & Cerar, S. (2014). The isotope altitude effect reflected in groundwater: a case study from Slovenia. Isotopes in Environmental and Health Studies, 50, 33–51. doi:10.1080/10256016.2013.826213.

    Article  CAS  Google Scholar 

  • Minissale, A., Borrini, D., Montegrossi, G., Orlando, A., Tassi, F., et al. (2008). The Tianjin geothermal field (north-eastern China): water chemistry and possible reservoir permeability reduction phenomena. Geothermics, 37, 400–428. doi:10.1016/j.geothermics.2008.03.001.

    Article  CAS  Google Scholar 

  • Nádor, A., Lapanje, A., Tóth, G., Rman, N., Szőcs, T., et al. (2012). Transboundary geothermal resources of the Mura-Zala basin: joint thermal aquifer management of Slovenia and Hungary. Geologija, 55, 209–224. doi:10.5474/geologija.2012.013.

    Article  Google Scholar 

  • Négrel, P., & Giraud, E. P. (2011). Isotopes in groundwater as indicators of climate change. Trends in Analytical Chemistry, 30, 1279–1290. doi:10.1016/j.trac.2011.06.001.

    Article  Google Scholar 

  • Pezdič, J. (1991). Isotopes in thermo-mineral aquaeous systems, PhD thesis (in Slovenian). Ljubljana, University of Ljubljana.

  • Pezdič, J., Dolenec, T., Pirc, S., & Žižek, D. (1995). Hydrogeochemical properties and activity of the fluids in the Pomurje region of the Pannonian sedimentary basin. Acta Geologica Hungarica, 39, 319–340.

    Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Shahul Hameed, A., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 168, 63–90. doi:10.1007/s10661-009-1092-5.

    Article  CAS  Google Scholar 

  • Prosser, S. J., & Scrimgeour, C. M. (1995). High-precision determination of 2H/1H in H2 and H2O by continuous-flow isotope ratio mass spectrometry. Analytical Chemistry, 67, 1992–1997. doi:10.1021/ac00109a014.

    Article  CAS  Google Scholar 

  • Re, V., Cissé Faye, S., Faye, A., Faye, S., Gaye, C. B., Sacchi, E., & Zuppi, G. M. (2011). Water quality decline in coastal aquifers under anthropic pressure: the case of a suburban area of Dakar (Senegal). Environmental Monitoring and Assessment, 172, 605–622. doi:10.1007/s10661-010-1359-x.

    Article  CAS  Google Scholar 

  • Rman, N. (2014). Analysis of long-term thermal water abstraction and its impact on low-temperature intergranular geothermal aquifers in the Mura-Zala basin, NE Slovenia. Geothermics, 51, 214–227. doi:10.1016/j.geothermics.2014.01.011.

    Article  Google Scholar 

  • Rman, N., Kumelj, Š., Tullner, T., Orosz, L., Palotás, K. (2011a). T-JAM borehole database. Ljubljana, Budapest, GeoZS, MAFI. http://akvamarin.geo-zs.si/t-jam_boreholes/. Accessed 26 July 2015.

  • Rman, N., Lapanje, A., & Prestor, J. (2011a). Water concession principles for geothermal aquifers in the Mura-Zala Basin, NE Slovenia. Water Resources Management, 25, 3277–3299. doi:10.1007/s11269-011-9855-5.

    Article  Google Scholar 

  • Rman, N., Lapanje, A., & Rajver, D. (2012). Analysis of thermal water utilization in the northeastern Slovenia (in Slovenian). Geologija, 55, 225–242. doi:10.5474/geologija.2012.014.

    Article  Google Scholar 

  • Rman, N., Gál, N., Marcin, D., Weilbold, J., Schubert, G., et al. (2015). Potentials of transboundary thermal water resources in the western part of the Pannonian basin. Geothermics, 55, 88–98. doi:10.1016/j.geothermics.2015.01.013.

    Article  Google Scholar 

  • Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1992). Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science, 258, 981–985. doi:10.1126/science.258.5084.981.

    Article  CAS  Google Scholar 

  • Simon, S. (2009). Characterization of groundwater and lake interaction in saline environment, at Kelemenszék Lake, Danube-Tisza Interfluve, Hungary, PhD thesis. Budapest, Eötvös Loránd University. http://teo.elte.hu/minosites/tezis2010_angol/sz_simon.pdf. Accessed 26 July 2015.

  • Simonič, M., & Ozim, V. (2000). Purification of a contaminated thermal well at an oil drilling site. Environmental Toxicology, 14, 211–216. doi:10.1002/(SICI)1522-7278(199905)14:2<211::AID-TOX1>3.0.CO;2-5.

    Article  Google Scholar 

  • Šram, D., Rman, N., Rižnar, I., & Lapanje, A. (2015). The three-dimensional regional geological model of the Mura-Zala Basin, northeastern Slovenia. Geologija, 58(2), 139–154. doi:10.5474/geologija.2015.011.

    Article  Google Scholar 

  • Stefansson, V. (1997). Geothermal reinjection experience. Geothermics, 26, 99–139. doi:10.1016/S0375-6505(96)00035-1.

    Article  CAS  Google Scholar 

  • Stewart, M. K. (1981). 18O and D enrichment by evaporation from sample containers. The International Journal of Applied Radiation and Isotopes, 32, 159–163. doi:10.1016/0020-708X(81)90107-1.

    Article  CAS  Google Scholar 

  • Szanyi, J., & Kovács, B. (2010). Utilization of geothermal systems in South-East Hungary. Geothermics, 39, 357–364. doi:10.1016/j.geothermics.2010.09.004.

    Article  Google Scholar 

  • Szőcs, T., Tóth, G., & Horvath, I. (2008). Using stable isotope data to characterise flow systems in the Pannonian Basin, Hungary. In J. C. Refsgaard (Ed.), Calibration and reliability in groundwater modelling: credibility of modelling (Vol. 320, pp. 131–136). Denmark: IAHS Publication.

    Google Scholar 

  • Szőcs, T., Rman, N., Süveges, M., Palcsu, L., Tóth, G., & Lapanje, A. (2013). The application of isotope and chemical analyses in managing transboundary groundwater resources. Applied Geochemistry Special Issue, 32, 95–107. doi:10.1016/j.apgeochem.2012.10.006.

    Article  Google Scholar 

  • Tan, H., Zhang, Y., Zhang, W., Kong, N., Zhang, Q., & Huang, J. (2014). Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes. Applied Geochemistry, 51, 23–32. doi:10.1016/j.apgeochem.2014.09.006.

    Article  CAS  Google Scholar 

  • Tóth, G., Rman, N., Rotár-Szalkai, Á., Kerékgyártó, T., Szőcs, T., Lapanje, A., Černák, R., Remsík, A., Schubert, G., & Nádor, A. (2016). Transboundary fresh and thermal groundwater flows in the west part of the Pannonian Basin. Renewable and Sustainable Energy Reviews, 57, 439–454. doi:10.1016/j.rser.2015.12.021.

    Article  Google Scholar 

  • Varsányi, I. I., & Kovács, L. Ó. (2009). Origin, chemical and isotopic evolution of formation water in geopressured zones in the Pannonian Basin, Hungary. Chemical Geology, 264, 187–196. doi:10.1016/j.chemgeo.2009.03.006.

    Article  Google Scholar 

  • Varsányi, I. I., Matray, J. M., & Kovács, L. Ó. (1997). Geochemistry of formation waters in the Pannonian Basin (southeast Hungary). Chemical Geology, 140, 89–106. doi:10.1016/S0009-2541(97)00045-4.

    Article  Google Scholar 

  • Varsányi, I. I., Matray, J. M., & Kovács, L. Ó. (1999). Hydrogeochemistry in two adjacent areas in the Pannonian Basin (Southeast-Hungary). Chemical Geology, 156, 25–39. doi:10.1016/S0009-2541(98)00178-8.

    Article  Google Scholar 

  • Vető, I., Futó, I., Horváth, I., & Szántó, Z. (2004). Late and deep fermentative methanogenesis as reflected in the H-C-O-S isotopy of the methane-water system in deep aquifers of the Pannonian Basin (SE Hungary). Organic Geochemistry, 35, 713–723. doi:10.1016/j.orggeochem.2004.02.004.

    Article  Google Scholar 

  • Vreča, P., Bronić, I., Horvatinčić, N., & Barešić, J. (2006). Isotopic characteristics of precipitation in Slovenia and Croatia: comparison of continental and maritime stations. Journal of Hydrology, 330, 457–469. doi:10.1016/j.jhydrol.2006.04.005.

    Article  Google Scholar 

  • Zhang, S., Tang, S., Li, Z., Guo, Q., & Pan, Z. (2015). Stable isotope characteristics of CBM co-produced water and implications for CBM development: the example of the Shizhuangnan block in the southern Qinshui Basin, China. Journal of Natural Gas Science and Engineering, 27, 1400–1411. doi:10.1016/j.jngse.2015.10.006.

    Article  CAS  Google Scholar 

  • Žlebnik, L. (1978). Tertiary aquifers in the Slovenske gorice and Goričko hills (in Slovenian). Geologija, 21, 311–324.

    Google Scholar 

  • Zmazek, B., Italiano, F., Zivcic, M., Vaupotic, J., Kobal, I., & Martinelli, G. (2002). Geochemical monitoring of thermal waters in Slovenia: relationships to seismic activity. Applied Radiation and Isotopes, 57, 919–930. doi:10.1016/S0969-8043(02)00200-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by the SI MIZŠ and the ESF OP Human Resources Development Program 2007–2013, PA 1, M 1.1, Contract No. 3330-14-509001, and the SI ARRS Programme group P1-0020 Groundwaters and Geochemistry. Investigation could not be performed without kind permission of owner of the wells, Sava Turizem d.d., and their helpful staff, M. Šutar and L. Šmigoc in Terme Ptuj, and S. Smodiš and P. Trajbarič in Terme 3000. Author also thanks M. Hoetzl for field support and S. Mozetič for graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Rman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rman, N. Hydrogeochemical and isotopic tracers for identification of seasonal and long-term over-exploitation of the Pleistocene thermal waters. Environ Monit Assess 188, 242 (2016). https://doi.org/10.1007/s10661-016-5250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5250-2

Keywords

Navigation