Skip to main content

Advertisement

Log in

Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (C d) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and C d and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (I geo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad, J. U., & Goni, M. A. (2010). Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 166, 347–357. doi:10.1007/s10661-009-1006-6.

    Article  CAS  Google Scholar 

  • Ahmad, M. K., Islam, S., Rahman, S., Haque, M. R., & Islam, M. M. (2010). The spatial and temporal distribution of heavy metals in water, sediment and fish (dry weight basis) of Buriganga River, Bangladesh. International Journal of Environmental Research, 4, 321–332.

    CAS  Google Scholar 

  • Anttila, P., Paatero, P., Tapper, U., & Jarvinen, O. (1995). Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment, 29, 1705–1718.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington.

  • Backman, B., Bodis, D., Lahermo, P., Rapant, S., & Tarvainen, T. (1997). Application of a groundwater contamination index in Finland and Slovakia. Environmental Geology, 36, 55–64.

    Article  Google Scholar 

  • Bhuiyan, M. A. H., Suruvi, N. I., Dampare, S. B., Islam, M. A., Quraishi, S. B., Ganyaglo, S., & Suzuki, S. (2011). Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 175, 633–649.

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Islam, M. A., Dampare, S. B., Parvez, L., & Suzuki, S. (2010). Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh. Journal of Hazardous Materials, 179, 1065–1077.

    Article  CAS  Google Scholar 

  • Boamponsem, L. K., Adam, J. I., Dampare, S. B., Nyarko, B. J. B., & Essumang, D. K. (2010). Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nuclear Instruments and Methods in Physics Research B, 268, 1492–1501.

    Article  CAS  Google Scholar 

  • Bzdusek, P. A., Lu, J., & Christensen, E. R. (2006). PCB congeners and dechlorination in sediments of Sheboygan River, Wisconsin, determined by matrix factorization. Environmental Science and Technology, 40, 120–129.

    Article  CAS  Google Scholar 

  • Cabrera, F., Clemente, L., Barrientos, E. D., Lόpez, R., & Murillo, J. M. (1999). Heavy metal pollution of soils affected by the Guadiamar toxic flood. Science of the Total Environment, 242, 117–129.

    Article  CAS  Google Scholar 

  • Çevik, F., Göksu, M. Z. L., Derici, O. B., & Fındık, Ö. (2009). An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152, 309–317.

    Article  Google Scholar 

  • Chatterjee, M., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Chakraborty, S., & Bhattacharya, B. D. (2007). Environment International, 33, 346–356.

    Article  CAS  Google Scholar 

  • Chen, C.-W., Kao, C.-M., Chen, C.-F., & Dong, C.-D. (2007). Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66, 1431–1440.

    Article  CAS  Google Scholar 

  • Comero, S., Servida, D., De Capitani, L., & Gawlik, B. M. (2012). Geochemical characterization of an abandoned mine site: a combined positive matrix factorization and GIS approach compared with principal component analysis. Journal of Geochemical Exploration, 118, 30–37.

    Article  CAS  Google Scholar 

  • Cook, J. A., Andrew, S. M., & Johnson, M. S. (1990). Lead, zinc, cadmium and fluoride in small mammals from contaminated grassland established on fluorspar tailings. Water, Air, and Soil Pollution, 51, 43–54.

    Article  Google Scholar 

  • Delbert, J. E., Grover, B. D., Woolwine, W. R., Eatough, N. L., Prather, K. A., Shields, L., Qin, X., Denkenberger, K., Long, R., & Farber, R. (2008). Source apportionment of 1 h semicontinuous data during the 2005 Study of Organic Aerosols in Riverside (SOAR) using positive matrix factorization. Atmospheric Environment, 42, 2706–2719.

    Article  Google Scholar 

  • Denton, G.R.W., Wood, H.R., Concepcion, L.P., Siegrist, H.G., Eflin, V.S., Narcis, D.K., Pangelinan, G.T. (1997). Analysis of in-place contaminants in marine sediments from four harbor locations on Guam: a pilot study. Mangilao: Water and Environmental Research Institute of the Western Pacific, Technical Report No. 87, University of Guam

  • Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). GeoJournal, 5, 295–304.

    Article  Google Scholar 

  • EPA (1998). Locating and estimating air emissions from sources of arsenic and arsenic compounds. Office of air quality, planning and standards research triangle Park, NC 27711

  • Espen, P. V., Nullens, H., & Adams, F. (1977). A computer analysis of X-ray fluorescence spectra. Nuclear Instruments and Methods, 142, 243–250.

    Article  Google Scholar 

  • FAO (1972). Overall study of the Messara Plain. Report on study of the water resources and their exploitation for irrigation in eastern Crete, FAO Report No. AGL:SF/GRE/31

  • Ghrefat, H., & Yusuf, N. (2006). Assessing Mn, Fe, Cu, Zn and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere, 65, 2114–2121.

    Article  CAS  Google Scholar 

  • Gibbs, R. J. (1973). Mechanisms of trace metal transport in rivers. Science, 180, 71–72.

    Article  CAS  Google Scholar 

  • Gonzáles-Macías, C., Schifter, I., Lluch-Cota, D. B., Méndez-Rodríguez, L., & Hernández-Vázquez, S. (2006). Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environmental Monitoring and Assessment, 118, 211–230.

    Article  Google Scholar 

  • González-Macías, C., Sánchez-Reyna, G., Salazar-Coria, L., & Schifter, I. (2014). Application of the positive matrix factorization approach to identify heavy metal sources in sediments. A case study on the Mexican Pacific Coast. Environmental Monitoring and Assessment, 186, 307–324. doi:10.1007/s10661-013-3375-0.

    Article  Google Scholar 

  • Han, Y. M., Du, P. X., Cao, J. J., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.

    Article  CAS  Google Scholar 

  • Huang, S., Arimoto, R., & Rahn, K. A. (2001). Sources and source variations for aerosol at Mace Head, Ireland. Atmospheric Environment, 35, 1421–1437.

    Article  CAS  Google Scholar 

  • Huang, S., & Conte, M. H. (2009). Source/process apportionment of major and trace elements in sinking particles in the Sargasso Sea. Geochimica et Cosmo chimica Acta, 73, 65–90.

    Article  CAS  Google Scholar 

  • Huang, S., Rahn, K. A., Arimoto, R., Graustein, W. C., & Turekian, K. K. (1999a). Semiannual cycles of pollution at Bermuda. Journal of Geophysical Research, 104, 309–318.

    Google Scholar 

  • Huang, S., Rahn, K. A., & Arimoto, R. (1999b). Testing and optimizing two factor-analysis techniques on aerosol at Narragansett, Rhode Island. Atmospheric Environment, 33, 2169–2185.

    Article  CAS  Google Scholar 

  • Islam, G. M. R., Khan, F. E., Hoque, M. M., & Jolly, Y. N. (2014). Consumption of unsafe food in the adjacent area of Hazaribag tannery campus and Buriganga River embankments of Bangladesh: heavy metal contamination. Environmental Monitoring and Assessment, 186, 7233–7244.

    Article  CAS  Google Scholar 

  • Jaeckels, J. M., Bae, M. S., & Schauer, J. J. (2007). Positive matrix factorization (PMF) analysis of molecular marker measurements to quantify the sources of organic aerosols. Environmental Science and Technology, 41, 5763–5769.

    Article  CAS  Google Scholar 

  • Jain, C. K., Singhal, D. C., & Sharma, M. K. (2005). Metal pollution assessment of sediment and water in the river Hindon, India. Environmental Monitoring and Assessment, 105, 193–207.

    Article  CAS  Google Scholar 

  • Jiang, D. Z., Teng, E. J., & Liu, Y. L. (1996). The contribution of difference on the element background values in soils and the analysis of variance of single factor on soil groups. Environmental Monitoring China, 2, 21–24.

    Google Scholar 

  • Karlsson, J., Ytreberg, E., & Eklund, B. (2010). Toxicity of antifouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environmental Pollution, 158, 681–687.

    Article  CAS  Google Scholar 

  • Kaushik, A., Kansal, A., Santosh, M., Kumari, S., & Kaushik, C. P. (2009). Heavy metal contamination of river Yamuna, Haryana, India: assessment by metal enrichment factor of the sediments. Journal of Hazardous Materials, 164, 265–270.

    Article  CAS  Google Scholar 

  • Kim, E., Hopke, P. K., & Edgerton, E. S. (2004). Improving source identification of Atlanta aerosol using temperature resolved carbon fraction in positive matrix factorization. Atmospheric Environment, 38, 3349–3362.

    Article  CAS  Google Scholar 

  • Lee, J. H., & Hopke, P. K. (2006). Apportioning sources of PM2.5 in St. Louis, MO using speciation trends network data. Atmospheric Environment, 40, 360–377.

    Article  Google Scholar 

  • Michael, J. T. (1975). Water analysis. In F. J. Welcher (Ed.), Standard methods of chemical analysis (part B) (6th ed.). Huntington: Robert E. Krieger Publishing Co. Inc.

    Google Scholar 

  • Mohan, S. V., Nithila, P., & Reddy, S. J. (1996). Estimation of heavy metal in drinking water and development of heavy metal pollution index. Journal of Environmental Science and Health A, 31, 283–289.

    Article  Google Scholar 

  • Moniruzzaman, M., Saha, B., & Shahariar, M. S. (2012). Seasonal variations in the water of Buriganga River with respect to heavy metals contamination. Bangladesh Journal of Scientific and Industrial Research, 47, 9–18.

    Article  CAS  Google Scholar 

  • Mousavi, S. R., Balali-Mood, M., Riahi-Zanjani, B., Yousefzadeh, H., & Sadeghi, M. (2013). Concentrations of mercury, lead, chromium, cadmium, arsenic and aluminum in irrigation water wells and wastewater used for agriculture in Mashhad, northeastern Iran. International Journal Occupational Medicine and Environmental, 4, 80–86.

    CAS  Google Scholar 

  • Müller, G. (1979). Schwermetalle in den sediments des Rheins-Veranderungen seitt 1971. Umschan, 79, 778–783.

    Google Scholar 

  • Müller, G. (1981). Die Schwermetallbelstung der sedimente des Neckars und seiner Nebenflusse: eine Bestandsaufnahme. Chem. Zeitung, 105, 157–164.

    Google Scholar 

  • Mwamburi, J. (2003). Variations in trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chemistry, 101, 739–745.

    Google Scholar 

  • Nolting, R. F., Ramkema, A., & Everaarts, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of Banc d’ Arquin (Mauritania). Continental Shelf Research, 19, 665–91.

    Article  Google Scholar 

  • Paatero, P. (1996). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 21, 1–13.

    Google Scholar 

  • Paatero, P. (1997). Least squares formulation of robust nonnegative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37, 15.

    Article  Google Scholar 

  • Paatero, P. (2007). User’s guide for positive matrix factorization programs PMF2 and PMF3, part 1‒2: tutorial. Helsinki, Finland: University of Helsinki.

    Google Scholar 

  • Paatero, P., & Hopke, P. K. (2003). Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 490, 277–289.

    Article  CAS  Google Scholar 

  • Paatero, P., & Tapper, U. (1993). Analysis of different modes of factor analysis as least squares fit problems. Chemometrics and Intelligent Laboratory Systems, 18, 183–194.

    Article  CAS  Google Scholar 

  • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111.

    Article  Google Scholar 

  • Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., & Sisler, J. F. (1998). Atmospheric aerosol over Alaska 1. Elemental composition and sources. Journal of Geophysical Research, 103, 19045–19057.

    Article  CAS  Google Scholar 

  • Polissar, A. V., Hopke, P. K., & Poirot, R. L. (2001). Atmospheric aerosol over Vermont: chemical composition and sources. Environmental Science and Technology, 35, 4604–4621.

    Article  CAS  Google Scholar 

  • Prasad, B., & Bose, J. M. (2001). Evaluation of the heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environmental Geology, 41, 183–188.

    Article  CAS  Google Scholar 

  • Prasad, B., & Jaiprakas, K. C. (1999). Evaluation of heavy metals in ground water near mining area and development of heavy metal pollution index. Journal of Environmental Science and Health, A34, 91–102.

    Article  CAS  Google Scholar 

  • Rahman, S., Khan, M. T. R., Akib, S., & Biswas, S. K. (2013). Investigation of heavy metal pollution in peripheral river water around Dhaka City. Pensee Journal, 75, 421–435.

    Google Scholar 

  • Ramessur, R. T., Parry, S. J., & Ramjeawon, T. (2001). The relationship of dissolved Pb to some dissolved trace metals (Al, Cr, Mn and Zn) and to dissolved nitrate and phosphate in a freshwater aquatic system in Mauritius. Environmental International, 26, 223–230.

    Article  CAS  Google Scholar 

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 11, 968–980.

    Article  Google Scholar 

  • Siegel, F. R. (2002). Environmental geochemistry of potential toxic metals. Berlin Heidelberg New York: Springer.

    Book  Google Scholar 

  • Sin, S. N., Chua, H., Lo, W., & Ng, L. M. (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environment International, 26, 297–301.

    Article  CAS  Google Scholar 

  • Song, X., Polissar, A. V., & Hopke, P. K. (2001). Sources of fine particle composition in the northeastern US. Atmospheric Environment, 35, 52–77.

    Article  Google Scholar 

  • Soonthornnonda, P., & Christensen, E. R. (2008). Source apportionment of pollutants and flows of combined sewer wastewater. Water Research, 42, 1989–1998.

    Article  CAS  Google Scholar 

  • Suthar, S., Nema, A. K., Chabukdhara, M., & Gupta, S. K. (2009). Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. Journal of Hazardous Materials, 171, 1088–1095.

    Article  CAS  Google Scholar 

  • Tariq, S. R., Shaheen, N., Khalique, A., & Sha, M. H. (2010). Distribution, correlation, and source apportionment of selected metals in tannery effluents, related soils, and groundwater—a case study from Multan, Pakistan. Environmental Monitoring and Assessment, 166, 303–312. doi:10.1007/s10661-009-1003-9.

    Article  CAS  Google Scholar 

  • Taylor, S. R. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28, 1273–1285.

    Article  CAS  Google Scholar 

  • Usero, J., Garcia, A., Fraidias, J. (2000). Calidad de las aguas y sedimentos del Litoral Andaluz. Editorial. Junta de Andalicia. Consejeria del Medio Ambiente, Sevilla 164 pp

  • Vaccaro, S., Sobiecka, E., Contini, S., Locoro, G., Free, G., & Gawlik, B. M. (2007). The application of positive matrix factorization in the analysis, characterisation and detection of contaminated soils. Chemosphere, 69, 1055–1063.

    Article  CAS  Google Scholar 

  • Yaqin, J. I., Yinchang, F., Jianhui, W. U., Tan, Z., Zhipeng, B., & Chiqing, D. (2008). Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Science, 20, 571–578.

    Article  Google Scholar 

  • Yue, W., Stölzel, M., Cyrys, J., Pitz, M., Heinrich, J., Kreyling, W. G., Wichmann, H.‒. E., Peters, A., Wang, S., & Hopke, P. K. (2008). Source apportionment of ambient fine particle size distribution using positive matrix factorization in Erfurt, Germany. Science of the Total Environment, 398, 133–144.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author acknowledged the financial support from the Japanese Government (MONBUKAGAKUSHO Scholarship 2010). Sincere gratitude is due to the Department of Earth Sciences, Okayama University, Japan, and the Bangladesh Atomic Energy Commission, Dhaka office, for their technical supports and laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amir Hossain Bhuiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.A.H., Dampare, S.B., Islam, M.A. et al. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices. Environ Monit Assess 187, 4075 (2015). https://doi.org/10.1007/s10661-014-4075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-014-4075-0

Keywords

Navigation