Skip to main content

Advertisement

Log in

Evaluating the ecological integrity of Atlantic forest remnants by using rapid ecological assessment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The need for quick identification of priority areas for biodiversity protection makes rapid assessment methods important management tools for defining conservation strategies. An increasingly used rapid assessment method is rapid ecological assessment (REA), a fast and flexible survey directed toward selected indicator species and vegetation forms. The purpose of this study was to propose and test REA based on plant community features of the semideciduous Atlantic forest (SAF). Correlation tests were performed between data collected by REA and plant species diversity, richness, and abundance collected by conventional woody plant inventory methods. The study was conducted in 21 SAF patches in Northern Paraná State, Brazil. The phytosociological inventory was conducted along a single transect and required 2 days to complete (excluding time spent for herbarium identification), whereas REA was conducted along three to four transects per working day. REA results correlated positively with woody plant diversity, proving REA to be an efficient method for defining the conservation status of SAF fragments, but accuracy of evaluations of threats to biological integrity are relatively low. Both the selection of appropriate variables and the skill level of field staff are critical and can strongly influence REA results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abate, T. (1992). Environmental rapid-assessment programs have appeal and critics. Bioscience, 42(7), 486–489.

    Article  Google Scholar 

  • Allen, C. D. (2009). Monitoring environmental impact in the upper Sonoran lifestyle: a new tool for rapid ecological assessment. Environmental Management, 43, 346–356. doi:10.1007/s00267-008-9212-5.

    Article  Google Scholar 

  • Anjos, L. (2004). Species richness and relative abundance of birds in natural and anthropogenic fragments of Brazilian Atlantic forest. Annals of the Brazilian Academy of Sciences, 76, 429–434. doi:10.1590/S0001-37652004000200036.

    Article  Google Scholar 

  • Batalha, M. A. (1997). Análise da vegetação da AIRE Cerrado Pé-de-Gigante (Santa Rita do Passa Quatro, SP). Dissertation, Universidade de São Paulo.

  • Bianchini, E., Popolo, R. S., Dias, M. C., & Pimenta, J. A. (2003). Diversidade e estrutura de espécies arbóreas em área alagável do município de Londrina, sul do Brasil. Acta Botanica Brasilica, 17(3), 405–419. doi:10.1590/S0102-33062003000300008.

    Article  Google Scholar 

  • Blumenthal, D. (2006). Interrelated causes of plant invasion. Science, 310, 243–244. doi:10.1126/science.1114851.

    Article  Google Scholar 

  • Carvalho, P. E. R. (1994). Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Colombo: Embrapa–CNPF/SPI.

    Google Scholar 

  • Carvalho, P. E. R. (2003). Espécies arbóreas brasileiras. Brasília: Editora Embrapa Informação Tecnológica.

    Google Scholar 

  • Chornesky, E. A., Bartuska, A. M., Aplet, G. H., et al. (2005). Science priorities for reducing the threat of invasive species to sustainable forestry. BioScience, 55(4), 335–348. doi:10.1641/0006-3568(2005)055[0335:SPFRTT]2.0.CO;2.

    Article  Google Scholar 

  • Compton, S. G., Wiebes, J. T., & Berg, C. C. (1996). The biology of fig trees and their associated animals. Journal of Biogeography, 23, 405–407. doi:10.1111/j.1365-2699.1996.tb00001.x.

    Article  Google Scholar 

  • Cronk, Q. B., & Fuller, J. L. (1995). Plant invaders. London: Chapman and Hall.

    Google Scholar 

  • Faccelli, J. M., & Pickett, S. T. A. (1991). Plant litter: its dynamics and effects on plant community structure. The Botanical Review, 57, 1–32. doi:10.1007/BF02858763.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization). (1994). Soil map of the world revised legend with corrections. Rome: FAO–UNESCO.

    Google Scholar 

  • Favreto, R., Mello, R.S.P., & Baptista, L.R.M. (2010). Growth of Euterpe edulis Mart. (Arecaceae) under forest and agroforestry in southern Brazil. Agroforestry Systems 80, 303–313. doi:10.1007/s10457-010-9321-z

    Google Scholar 

  • Fennessy, M. S., Jacobs, A. D., & Kentula, M. E. (2007). An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands, 27(3), 543–560.

    Article  Google Scholar 

  • Galetti, M., & Fernandez, J. C. (1998). Palm heart harvesting in the Brazilian Atlantic forest: changes in industry structure and the illegal trade. Journal of Applied Ecology, 35, 294–301. doi:10.1046/j.1365-2664.1998.00295.x.

    Article  Google Scholar 

  • Gascon, C., Williamson, G. B., & Fonseca, G. A. B. (2000). Receding forest edges and vanishing reserves. Science, 288(5470), 1356–1358. doi:10.1126/science.288.5470.1356.

    Article  CAS  Google Scholar 

  • Gentry, A. H. (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–34.

    Article  Google Scholar 

  • Grombone-Guaratini, M. T., & Rodrigues, R. R. (2002). Seed bank and seed rain in a seasonal semi-deciduous forest in south-eastern Brazil. Journal of Tropical Ecology, 18(1), 759–774. doi:10.1017/S0266467402002493.

    Google Scholar 

  • Herlihy, A. T., Sifneos, J., Bason, C., et al. (2009). An approach for evaluating the repeatability of rapid wetland assessment methods: the effects of training and experience. Environmental Management, 44, 369–377. doi:10.1007/s00267-009-9316-6.

    Article  Google Scholar 

  • Jones, D. T., & Eggleton, P. (2000). Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Advances in Applied Ecological Techniques, 37, 191–203.

    Article  Google Scholar 

  • Kapos, V., Wanderlli, E., Camargo, J. L., & Ganade, G. (1997). Edge-related changes in environment and plant responses due to forest fragmentation in central Amazonia. In W. F. Laurance & R. O. Bierregaard (Eds.), Tropical forest remnants: ecology, management, and conservation of fragmented communities (pp. 33–44). Chicago: University of Chicago Press.

    Google Scholar 

  • Laurance, W. F., Delamonica, P., Laurance, S. G., Vasconcelos, H. L., & Lovejoy, T. E. (2000). Rainforest fragmentation kills big trees. Nature, 404, 836–836. doi:10.1038/35009032.

    Article  CAS  Google Scholar 

  • Laurance, W. F., Salicrup, D. P., Delamonica, P., et al. (2001). Rain forest fragmentation and structure on Amazonian liana communities. Ecology, 82, 105–116. doi:10.1890/0012-9658(2001)082[0105:RFFATS]2.0.CO;2].

    Article  Google Scholar 

  • Laurance, W. F., Nascimento, H. E. M., Laurance, S. G., et al. (2006). Rapid decay of tree-community composition in Amazonian forest fragments. Proceedings of the National Academy of Sciences of the United States of America, 103, 19010–19014. doi:10.1073/pnas.0609048103.

    Article  CAS  Google Scholar 

  • Magurran, A. E. (1988). Ecological diversity and its measurement. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Magurran, A. E. (2004). Measuring biological diversity. Oxford: Wiley-Blackwell.

    Google Scholar 

  • Maragos, J. E., & Cook, C. W., Jr. (1995). The 1991–1992 rapid ecological assessment of Palau's coral reefs. Coral Reefs, 14, 237–252.

    Google Scholar 

  • Matos, D. M. S., Santos, C. J. F., & Chevalier, D. R. (2002). Fire and restoration of the largest urban forest of the world in Rio de Janeiro City, Brazil. Urban Ecosystems, 6, 151–161. doi:10.1023/A:1026164427792.

    Article  Google Scholar 

  • Michalski, F., Nishi, I., & Peres, C. A. (2007). Disturbance mediated drift in tree functional groups in Amazonian forest fragments. Biotropica, 39, 691–701. doi:10.1111/j.1744-7429.2007.00318.x.

    Article  Google Scholar 

  • MMA (Ministério do Meio Ambiente). (2002). Avaliação e identificação de áreas e ações prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. Brasília: MMA/SBF.

    Google Scholar 

  • Oberbauer, S. F., von Kleist, K. I. I. I., Whelan, K. R. T., & Koptur, S. (1996). Effects of Hurricane Andrew on epiphyte communities within cypress domes of Everglades National Park. Ecology, 77(3), 964–967. doi:10.2307/2265516.

    Article  Google Scholar 

  • Panadda, L., Stein, R. M., & Ørjan, T. (2011). Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia, 165(1), 161–168. doi:10.1007/s00442-010-1707-0.

    Article  Google Scholar 

  • Pierce, S., Ceriani, R. M., Villa, M., & Cerabolini, B. (2006). Quantifying relative extinction risks and targeting intervention for the orchid flora of a natural park in the European Prealps. Conservation Biology, 20(6), 1804–1810. doi:10.1111/j.1523-1739.2006.00539.x.

    Article  Google Scholar 

  • Pizo, M. A., & Simão, I. (2001). Seed deposition patterns and the survival of seeds and seedlings of the palm Euterpe edulis. Acta Oecologica, 22, 229–233. doi:10.1016/S1146-609X(01)01108-0.

    Article  Google Scholar 

  • Radford, I. J., Grice, A. C., Abbott, B. N., Nicholas, D. M., & Whiteman, L. (2008). Impacts of changed fire regimes on tropical riparian vegetation invaded by an exotic vine. Austral Ecology, 33, 151–167. doi:10.1111/j.1442-993.2007.01803.x.

    Article  Google Scholar 

  • Ramos, V., Durigan, G., Franco, G. A. D. C., Siqueira, M. F., & Rodrigues, R. R. (2007). Árvores da Floresta Estacional Semidecidual: Guia de Identificação de Espécies. São Paulo: EDUSP.

    Google Scholar 

  • Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews, 81, 1–31. doi:10.1017/S1464793105006846.

    Article  Google Scholar 

  • Sayre, R., Roca, E., Sedaghatkish, G., Young, B., Keel, S., Roca, R., et al. (2000). Nature in focus: rapid ecological assessment (p. 182). Washington: Island.

    Google Scholar 

  • Schnitzer, S. A., Dallingand, J. W., & Carson, W. P. (2000). The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. Journal of Ecology, 88, 655–666. doi:10.1046/j.1365-2745.2000.00489.x.

    Article  Google Scholar 

  • Selaya, N. G., Anten, N. P. R., Oomen, R. J., Matthies, M., & Werger, M. J. A. (2007). Above-ground biomass investments and light interception of tropical forest trees and lianas early in succession. Annals of Botany, 99, 141–151. doi:10.1093/aob/mcl235.

    Article  CAS  Google Scholar 

  • Shanahan, M., So, S., Compton, S. G., & Corlett, R. (2001). Fig-eating by vertebrate frugivores: a global review. Biological Reviews, 76(4), 529–572. doi:10.1017/S1464793101005760.

    Article  CAS  Google Scholar 

  • Silveira, S. (2006). A vegetação do Parque Estadual Mata dos Godoy. In: J. M. D. Torezan (Ed.), Ecologia do Parque Estadual Mata dos Godoy (pp. 19–27). Londrina: Itedes.

  • Songwe, N. C., Fasehun, F. E., & Okali, D. U. U. (1988). Litterfall and productivity in a tropical rain forest, Southern Bankundu Forest, Cameroon. Journal of Tropical Ecology, 4, 25–37. doi:10.1017/S0266467400002467.

    Article  Google Scholar 

  • Sosa, V., & Platas, T. (1998). Extinction and persistence of rare orchids in Veracruz, Mexico. Conservation Biology, 12(2), 451–455. doi:10.1111/j.1523-1739.1998.96306.x.

    Article  Google Scholar 

  • Stapanian, M. A., Waite, T. A., Krzys, G., Mack, J. J., & Micacchion, M. (2004). Rapid assessment indicator of wetland integrity as an unintended predictor of avian diversity. Hydrobiologia, 520, 119–126. doi:10.1023/B:HYDR.0000027731.16535.53.

    Article  Google Scholar 

  • Stein, E. D., Fetscher, A. E., Clark, R. P., et al. (2009). Validation of a wetland rapid assessment method: use of EPA’s level 1-2-3 framework for method testing and refinement. Wetlands, 29(2), 648–665. doi:10.1672/07-239.1.

    Article  Google Scholar 

  • Sutula, M. A., Stein, E. D., Collins, J. N., Fetscher, A. E., & Clark, R. (2006). A practical guide for the development of a wetland assessment method: the California experience. Journal of the American Water Resources Association, 42, 157–175. doi:10.1111/j.1752-1688.2006.tb03831.x.

    Article  Google Scholar 

  • Torezan, J. M. D. (2002). Nota sobre a vegetação da bacia do Rio Tibagi. In M. E. Medri, E. Bianchini, A. O. Shibatta, & J. A. Pimenta (Eds.), A bacia do Rio Tibagi (pp. 103–107). Londrina: Universidade Estadual de Londrina.

    Google Scholar 

  • Torezan, J.M.D. (2003). Fragmentação Florestal e Prioridades para a Conservação da Biodiversidade. PhD thesis, Universidade de São Paulo.

  • Turner, I. M., & Corlett, R. T. (1996). The conservation value of small, isolated fragments of lowland tropical rainforest. Trends in Ecology & Evolution, 11(8), 330–333. doi:10.1016/0169-5347(96)10046-x.

    Article  CAS  Google Scholar 

  • Vasconcelos, H. L., & Luizão, F. J. (2004). Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecological Applications, 14, 884–892. doi:10.1890/03-5093.

    Article  Google Scholar 

  • Viana, V. M., & Tabanez, A. A. J. (1996). Biology and conservation of forest fragments in the Brazilian Atlantic moist forest. In J. Schellas & R. Greenberg (Eds.), Forest patches in tropical landscapes (pp. 151–167). Washington: Island.

    Google Scholar 

  • Viana, V. M., Tabanez, A. A. J., & Batista, J. L. F. (1997). Dynamics and restoration of forest fragments in the Brazilian Atlantic moist forest. In W. F. Laurance & R. O. Bierregaard (Eds.), Tropical forest remnants: ecology, management, and conservation of fragmented communities (pp. 351–365). Chicago: University of Chicago Press.

    Google Scholar 

  • Vidal, M. M., Pivello, V. R., Meirelles, S. T., & Metzger, J. P. (2007). Produção de serapilheira em floresta Atlântica secundária numa paisagem fragmentada (Ibiúna, SP): importância da borda e tamanho dos fragmentos. Revista Brasileira de Botânica, 30(3), 521–532. doi:10.1590/S0100-84042007000300016.

    Article  Google Scholar 

  • Zhou, B., Fu, M., Xie, J., Yang, X., & Li, Z. (2005). Ecological functions of bamboo forest: research and application. Journal of Forestry Research, 16, 143–147. doi:10.1007/BF02857909.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank E. M. Francisco, O. C. Pavão, A. L. Cavalheiro, and other colleagues in Londrina University for help in field work. Dr. Efraim Rodrigues, Dr. Luiz dos Anjos, and an anonymous referee contributed with valuable suggestions in a previous version of the article. CNPq (Brazilian government research council) provided a research grant to JMDT (313854/2009-2), a technical staff grant to O. C. Pavão (503836/2010-9), and other research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marcelo Torezan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medeiros, H.R., Torezan, J.M. Evaluating the ecological integrity of Atlantic forest remnants by using rapid ecological assessment. Environ Monit Assess 185, 4373–4382 (2013). https://doi.org/10.1007/s10661-012-2875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2875-7

Keywords

Navigation